K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

`a)`

`A=(x+1)(2x-1)`

`=2x^{2}+x-1`

`=2(x^{2}+(1)/(2)x-(1)/(2))`

`=2(x^{2}+(1)/(2)x+(1)/(16)-(9)/(16))`

`=2(x+(1)/(4))^{2}-(9)/(8)>= -9/8` với mọi `x`

Dấu `=` xảy ra khi :

`x+(1)/(4)=0<=>x=-1/4`

Vậy `min=-9/8<=>x=-1/4`

``

`b)`

`(4x+1)(2x-5)`

`=8x^{2}-18x-5`

`=8(x^{2}-(9)/(4)x-(5)/(8))`

`=8(x^{2}-(9)/(4)x+(81)/(64)-(121)/(64))`

`=8(x-(9)/(8))^{2}-(121)/(8)>= -(121)/(8)` với mọi `x`

Dấu `=` xảy ra khi :

`x-(9)/(8)=0<=>x=9/8`

Vậy `min=-121/8<=>x=9/8`

NV
21 tháng 8 2021

\(A=2x^2+x-1=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(A_{min}=-\dfrac{9}{8}\) khi \(x=-\dfrac{1}{4}\)

\(B=8x^2-18x-5=8\left(x-\dfrac{9}{8}\right)^2-\dfrac{121}{8}\ge-\dfrac{121}{8}\)

\(B_{min}=-\dfrac{121}{8}\) khi \(x=\dfrac{9}{8}\)

13 tháng 11 2016

Câu 1:

\(2x^3-3x^2+x+a\)

\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)

\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :

\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).

Câu 2:

\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)

\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)

\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)

\(\Leftrightarrow2x^2-10x-11=0\)

\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)

Bài 1:

a: \(=x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\)

Dấu '=' xảy ra khi x=3/2

b: \(=4x^2-4x+1+x^2+4x+4=5x^2+5>=5\)

Dấu '=' xảy ra khi x=0

Bài 2: 

a: \(=-\left(x^2-2x-4\right)=-\left(x^2-2x+1-5\right)=-\left(x-1\right)^2+5< =5\)

Dấu = xảy ra khi x=1

b: \(=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4< =4\)

Dấu '=' xảy ra khi x=2

11 tháng 9 2016

a) \(A=x^2-2x+5\)

\(A=x^2-2x+1+4\)

\(A=\left(x-1\right)^2+4\)

Có:  \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Dấu '=' xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

Vậy: \(Min_A=4\) tại \(x=1\)

b) \(B=x^2+x+1\)

\(B=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '=' xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Vậy: \(Min_B=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

11 tháng 9 2016

c) \(C=4x-x^2+3\)

\(C=-x^2+4x-4+8\) 

\(C=8-\left(x^2-4x+4\right)\)

\(C=8-\left(x-2\right)^2\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow8-\left(x-2\right)^2\le8\)

Dấu '=' xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Max_C=8\) tại \(x=2\)

22 tháng 2 2020

1/

\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)

\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)-\left(\frac{2x-13}{15}-1\right)=\left(\frac{3x-15}{27}-1\right)-\left(\frac{4x-27}{29}-1\right)\)

\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}=\frac{3\left(x-14\right)}{27}-\frac{4\left(x-14\right)}{29}\)

\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}-\frac{3\left(x-14\right)}{27}+\frac{4\left(x-14\right)}{29}=0\)

\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{2}{15}-\frac{3}{27}+\frac{4}{29}\right)=0\)

\(\Leftrightarrow x-14=0\)(vì 1/13 -2/15 -3/27 +4/29 khác 0)

\(\Leftrightarrow x=14\)

vậy...................

2/ 

\(a,ĐKXĐ:x\ne\pm2\)

\(b,A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)

          \(=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)

           \(=\frac{4\left(x+2\right)-3x}{3\left(x-2\right)\left(x+2\right)}\)

            \(=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)

c,với \(x\ne\pm2\)ta có \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)

với x=1 thay vào A ta có \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)

24 tháng 12 2017

Câu 1:Tìm x biết

a.\(\left(x-1\right)\left(x+2\right)-x^2=6\)

\(\Rightarrow x^2+x-2-x^2=6\)

\(\Rightarrow x-2=6\)

\(\Rightarrow x=8\)

b.\(5x\left(x-2017\right)-x+2017=0\)

\(\Rightarrow5x\left(x-2017\right)-\left(x-2017\right)=0\)

\(\Rightarrow\left(x-2017\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{5}\end{matrix}\right.\)

câu 2: Cho biểu thức M=\(\dfrac{4x^2-9}{6x^2-18x}+\dfrac{2x^2+9}{6x\left(x-3\right)}\)

a. Tìm điều kiện của x để giá trị biểu thức M được xác định

ĐKCĐ của biểu thức M là :

\(\left\{{}\begin{matrix}6x^2-18x\ne0\\6x\left(x-3\right)\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)

b.Tính giá trị của biểu thức M với x = -2

\(M=\dfrac{4x^2-9}{6x^2-18}+\dfrac{2x^2+9}{6x\left(x-3\right)}\)

\(=\dfrac{4x^2-9}{6x\left(x-3\right)}+\dfrac{2x^2+9}{6x\left(x-3\right)}\)

\(=\dfrac{4x^2-9+2x^2+9}{6x\left(x-3\right)}\)

\(=\dfrac{6x^2}{6x\left(x-3\right)}=\dfrac{x}{x-3}\)

Thay x = - 2 vào biểu thưcs M ,có :

\(\dfrac{-2}{-2-3}=\dfrac{-2}{-5}=\dfrac{2}{5}\)

Vậy tại x= - 2 giá trị biểu thức M là \(\dfrac{2}{5}\)

24 tháng 12 2017

cảm ơn b nhayeu

8 tháng 8 2016

(2x-5)2+2(2x-5)(3x+1)+(3x+1)2

=(2x-5)[(2x-5)+2(3x+1)]+(3x+1)2

=(2x-5)[8x-3]+(3x+1)2

=16x2-46x+15+9x2+6x+1

=25x2-40x+16

=(5x)2-2*5x*4+42

=(5x-4)2

8 tháng 8 2016

phần nâng cao chính là một hằng đẳng thức hoàn chỉnh (a+b)2. trong đó 2x-5 là a và 3x+1 là b