K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+2012\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2012\)

Đặt  \(x^2-5x+4=t\) ta có:

            \(A=t\left(t+2\right)+2012\)

           \(=t^2+2t+1+2011\)

           \(=\left(t+1\right)^2+2011\)  \(\ge2011\)   \(\forall x\)

Dấu  "="   xảy ra \(\Leftrightarrow\)\(t+1=0\)

                          \(\Leftrightarrow\)\(x^2-5x+4+1=0\)

       MK lm đc có vậy thôi. bn tham khảo nhé

Min A = 2011

4 tháng 1 2018

Chỗ đặt của Giang mk nghĩ nên đặt t = x2 - 5x + 5 thì hơn xong áp dụng hằng đẳng thức số 3 sẽ dễ hơn! 

17 tháng 3 2017

1.theo bài ra ta có

\(\dfrac{2}{3}x\) = \(\dfrac{x}{\dfrac{3}{2}}\) =\(\dfrac{3x}{\dfrac{9}{2}}\) ; \(\dfrac{3}{4}y\) = \(\dfrac{y}{\dfrac{4}{3}}\) =\(\dfrac{4y}{\dfrac{16}{3}}\); \(\dfrac{4}{5}z\) = \(\dfrac{\dfrac{z}{5}}{4}\)=\(\dfrac{5z}{\dfrac{25}{4}}\)

\(\Rightarrow\)\(\dfrac{3x+4y-5z}{\dfrac{9}{2}+\dfrac{16}{3}-\dfrac{25}{4}}=\dfrac{129}{\dfrac{43}{12}}=36\)

\(\Rightarrow\dfrac{3x}{\dfrac{9}{2}}=36\Rightarrow3x=36\cdot\dfrac{9}{2}=162\Rightarrow x=\dfrac{162}{3}=54\)

\(\Rightarrow\dfrac{4y}{\dfrac{16}{3}}=36\Rightarrow4y=36\cdot\dfrac{16}{3}=192\Rightarrow y=\dfrac{192}{4}=48\)

\(\Rightarrow\dfrac{5z}{\dfrac{25}{4}}=36\Rightarrow5z=36\cdot\dfrac{25}{4}=225\Rightarrow z=\dfrac{225}{5}=45\)

2.vì giá trị của A nhỏ nhất nên\(|x-5|\)phải nhỏ nhất và \(|x+300|\)cũng phải nhỏ nhất

mặt khác \(|x-500|\ge0\)\(|x+300|\ge0\)

\(\Rightarrow|x-500|=0\)\(|x+300|=0\)

\(\Rightarrow\)x = 500 hoặc x = -300

thay vào biểu thức A ta được:

nếu x = 500

\(\Leftrightarrow|500-500|+|500+300|=800\)

nếu x = -300

\(\Leftrightarrow|-300-500|+|-300+300|=800\)

vậy giá trị nhỏ nhất của biểu thức A là 800

3.a) \(\Rightarrow\)a-b= 2a + 2b \(\Rightarrow\)-b-2b = 2a - a\(\Leftrightarrow\)a= -3b

thay vào ta được:

-3b-b=2(-3b+b)=\(\dfrac{-3b}{b}\)\(\Leftrightarrow\)-4b = -3\(\Rightarrow\)b=\(\dfrac{3}{4}\)\(\Rightarrow a=-3\cdot\dfrac{3}{4}=-\dfrac{9}{4}\)

vậy a = \(\dfrac{-9}{4}\) và b = \(\dfrac{3}{4}\)

b) cách làm tương tự câu 2 (p/s lười trình bày lắm) đáp số bằng 1

17 tháng 3 2017

đăng từng câu 1 thôi

1 tháng 11 2016

=> e chịu ạ 

6 tháng 6 2023

(a) Điều kiện : \(x\ne-1.\)

Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)

\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)

\(=x\left(x+1\right)+1-2x-1\)

\(=x^2-x.\)

Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)

 

(b) Ta có : \(P=x^2-x\)

\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)

ĐKXĐ: \(x\notin\left\{-1;-\dfrac{1}{2}\right\}\)

a) Ta có: \(P=\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)

\(=\left(\dfrac{2x}{\left(x+1\right)\left(x^2+1\right)}+\dfrac{x^2+1}{\left(x^2+1\right)\left(x+1\right)}\right):\left(\dfrac{x+1+x}{x+1}\right)\)

\(=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x^2+1\right)}:\dfrac{2x+1}{x+1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x+1}{2x+1}\)

\(=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\)

b) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ

nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(P=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\), ta được:

\(P=\left[\left(\dfrac{1}{4}\right)^2+2\cdot\dfrac{1}{4}+1\right]:\left[\left(2\cdot\dfrac{1}{4}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)

\(=\left(\dfrac{1}{16}+\dfrac{1}{2}+1\right):\left[\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)

\(=\dfrac{25}{16}:\dfrac{51}{32}=\dfrac{25}{16}\cdot\dfrac{32}{51}=\dfrac{50}{51}\)

Vậy: Khi \(x=\dfrac{1}{4}\) thì \(P=\dfrac{50}{51}\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)