Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk tốt
\(\left(x+y+4\right)\left(x+y-4\right)=\) \(\left(x+y\right)^2-4^2\)
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk tốt
1) Viết biểu thức sau dưới dạng hiệu 2 bình phương:
a)4x2+6x+7-y2-6y
b)x2+y2-4x-6y+13
c)4x2-12x-y2+2y+8
b) \(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
c) \(4x^2-12x-y^2+2y+8\)
\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a) ta có : \(A=x^2+8x+2016=x^2+8x+16+2000\)
\(\Leftrightarrow A=\left(x+4\right)^2+2000\ge2000\)
\(\Rightarrow\) giá trị nhỏ nhất của \(A\) là \(2000\) dấu "=" xảy ra khi \(x=-4\)
vậy .....................................................................................................
b) ta có : \(a^3-3ab-b^3=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2-3ab\)
\(=\left(a-b\right)^3+3ab\left(a-b-1\right)=1^3+3ab\left(1-1\right)=1\)
c) ta có : \(x^2+y^2+4x-6x+13=0\Leftrightarrow x^2+4x+4+y^2-6x+9=0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2=0\)
ta có : \(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
dấu "=" xảy ra khi \(x=-2;y=3\)
vậy \(x=-2;y=3\)
\(A=\left(x-1\right)^2+2\ge2\)
\(B=-\left(x+2\right)^2+7\le7\)
\(C=2\left(x+1\right)^2+3\ge3\)
\(D=\left(x-1\right)^2+2\left(y+3\right)^2+\left(3z+1\right)^2+4\ge4\)
\(E=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)
\(F=\left(x-2\right)^2+\left(y+1\right)^2\ge0\)
\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(H=-x^2+7x+74=-\left(x-\frac{7}{2}\right)^2+\frac{345}{4}\le\frac{345}{4}\)
có thể trả lời đầy đủ giúp mình câu b, c, d, h được ko ??????????
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
\(C=x^2+y^2+4x-6y+1\)
\(=x^2+4x+4+y^2-6y+9-12\)
\(=\left(x+2\right)^2+\left(y-3\right)^2+1\)
\(=30^2+10^2+1\)
=1001