Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
là A, ta có
\(A=\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
\(\Rightarrow2.A=\dfrac{2}{25.27}+\dfrac{2}{27.29}+\dfrac{2}{29.31}+...+\dfrac{2}{73.75}\)\(\Rightarrow2.A=\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)\(\Rightarrow2.A=\dfrac{1}{25}-\dfrac{1}{75}\)
\(\Rightarrow2.A=\dfrac{2}{75}\)
\(\Rightarrow A=\dfrac{2}{75}\div2\)
\(\Rightarrow A=\dfrac{1}{75}\)
KL: Vậy A =\(\dfrac{1}{75}\)
B=1/2. (2/25.27+2/27.29+2/29.31+....+2/73.75) B=1/2. (1/25-1/27+1/27-1/29+1/29-1/31+....+1/73-1/75) B=1/2. (1/25-1/75) B=1/2. 2/75 B=1/75
\(3A=\dfrac{3}{8.11}+\dfrac{3}{18.21}+..+\dfrac{3}{197.200}\)
D= 1/2. (1/25-1/27 +1/27-1/29+...+1/73-1/75)
= 1/2. (1/25 -1/75)
=1/2 . 2/75= 1/75
D = \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+...+\dfrac{1}{73.75}\)
2D = 2( \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+...+\dfrac{1}{73.75}\) )
= \(\dfrac{2}{25.27}+\dfrac{2}{27.29}+...+\dfrac{2}{73.75}\)
= \(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)
= \(\dfrac{1}{25}-\dfrac{1}{75}\)
= \(\dfrac{2}{75}\)
B = \(\frac{1}{25}\)- \(\frac{1}{27}\)+ \(\frac{1}{27}\)-\(\frac{1}{29}\)+\(\frac{1}{29}\)-\(\frac{1}{31}\)+... + \(\frac{1}{73}\)-\(\frac{1}{75}\)=
B = \(\frac{1}{25}\)-\(\frac{1}{75}\)
B = \(\frac{2}{75}\)
Ủng hộ mik nha, mk đg âm điểm nè
B = 1/2.(1/25-1/27+1/27-1/29+....+1/73-1/75)
= 1/2.(1/25-1/75)
=1/2.2/75
= 1/75
kik cho mk nhé. đúng đấy. kb luôn
#)Giải :
\(B=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(2B=\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\)
\(2B=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\)
\(2B=\frac{1}{25}-\frac{1}{75}\)
\(2B=\frac{2}{75}\)
\(B=\frac{2}{75}\div2\)
\(B=\frac{1}{75}\)
\(\Rightarrow2A=\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\)
\(\Rightarrow2A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\)
\(\Rightarrow2A=\frac{1}{25}-\frac{1}{75}=\frac{3}{75}-\frac{1}{75}=\frac{2}{75}\)
\(\Rightarrow A=\frac{2}{75}\div2=\frac{1}{75}\)
\(A=7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=\dfrac{7.60}{700}=\dfrac{420}{700}=\dfrac{3}{5}\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{25}-\dfrac{1}{75}\right)=\dfrac{1}{75}\)
A = \(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
=\(7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{70}\right)\)
=\(7.\frac{3}{35}\)
=\(\frac{3}{5}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
=\(\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
=\(\frac{1}{2}.\frac{2}{75}\)
=\(\frac{1}{75}\)
`=>2B=(2)/(25.27)+(2)/(27.29)+(2)/(29.31)+....+(2)/(73.75)`
`=>2B=(1)/(25)-(1)/(27)+(1)/(27)-(1)/(29)+(1)/(29)-(1)/(31)+.....+(1)/(73)-(1)/(75)`
`=>2B=(1)/(25)-(1)/(75)`
`=>2B=(3)/(75)-(1)/(75)=(2)/(75)`
`=>B=(2)/(75):2`
`=>B=1/75`
\(B=\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
\(\Rightarrow2B=\dfrac{2}{25.27}+\dfrac{2}{27.29}+...+\dfrac{2}{73.75}=\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)\(\Rightarrow2B=\dfrac{1}{25}-\dfrac{1}{75}=\dfrac{2}{75}\Rightarrow B=\dfrac{1}{75}\)