\(A=\frac{3x-2y}{3x+2y}\)

biết rằng \(9...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

Ta có \(9x^2+4y^2=20xy\Leftrightarrow9x^2+2.3x.2y+4y^2=8xy\Leftrightarrow\left(3x+2y\right)^2=8xy\)\(32xy\)

Mặt khác \(9x^2+4y^2=20xy\Leftrightarrow9x^2-2.3x.2y+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\)

\(\Rightarrow\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}=\frac{1}{4}\)\(\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=+-\frac{1}{2}\)

Do \(2y< 3x< 0\Rightarrow A=-\frac{1}{2}\)

10 tháng 1 2021

Ta có: \(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\frac{20xy-12xy}{20xy+12xy}=\frac{8xy}{32xy}=\frac{1}{4}\)

Vì \(2y< 3x< 0\Rightarrow3x-2y>0,3x+2y< 0\Rightarrow A< 0\)

Vậy A= \(\frac{-1}{2}\)

10 tháng 1 2021

Ta có :

\(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}\)\(=\frac{20xy-12xy}{20xy+12xy}\)\(=\frac{8xy}{32xy}\)\(=\frac{1}{4}\)

\(Do\)\(2y< 3x< 0\Rightarrow3x-2y>0;3x+2y< 0\Rightarrow A< 0\)

Vậy \(A=-\frac{1}{2}\)

18 tháng 7 2018

Ta có: \(9x^2+4y^2=20xy\Leftrightarrow9x^2-12xy+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\) (1)

Mặt khác: \(9x^2+4y^2=20xy\Leftrightarrow9x^2+12xy+4y^2=32xy\Leftrightarrow\left(3x+2y\right)^2=32xy\) (2)

Từ (1) và (2) => \(\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=\pm\frac{1}{2}\)

Mà \(2y< 3x< 0\Rightarrow A=\frac{3x-2y}{3x+2y}=\frac{-1}{2}\)

20 tháng 7 2017

ta có:

 \(\left(3x-2y\right)^2=9x^2-12xy+4y^2=20xy-12xy=8xy\)

\(\Rightarrow3x-2y=\sqrt{8xy}\)(1)

\(\left(3x+2y\right)^2=9x^2+12xy+4y^2=20xy+12xy=32xy\)

\(\Rightarrow3x+2y=\sqrt{32xy}\)(2)

từ (1) và (2) 

\(\Rightarrow\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)

1 tháng 12 2018

a) ĐKXĐ : \(x+y\ne0\)

\(x^2-2y^2=xy\)

\(x^2-y^2-y^2-xy=0\)

\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)

\(\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)

Với x - 2y = 0 ta có x = 2y

Thay x = 2y vào A ta có :

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

1 tháng 12 2018

a)

Ta có:

\(x^2-2y^2=xy\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=\left(x+y\right)\left(x-2y\right)=0\)

=>x-2y=0=>x=2y

Thế vào A rùi giải

3 tháng 8 2016

Bài 1: Theo đầu bài ta có:
\(V=x^3+y^3+3xy\)
\(=\left(x+y\right)\left(x^2+y^2-xy\right)+3xy\)
Do x + y = 1 nên:
\(=x^2+y^2-xy+3xy\)
\(=x^2+y^2+2xy\)
\(=\left(x+y\right)^2\)
Do x + y = 1 nên:
\(=1^2=1\)

Bài 2: ( Tớ thấy đề bị sai. Cậu xem lại đề nhé! )

Bài 3: Theo đầu bài ta có:
\(9x^2+4y^2=20xy\)
\(\Rightarrow\left(3x\right)^2+\left(2y\right)^2-12xy=8xy\)
\(\Rightarrow\left(3x-2y\right)^2=8xy\)
\(\Rightarrow3x-2y=\sqrt{8xy}\)
Mà ta thấy:
\(9x^2+4y^2=20xy\)
\(\Rightarrow\left(3x\right)^2+\left(2y\right)^2+12xy=32xy\)
\(\Rightarrow\left(3x+2y\right)^2=32xy\)
\(\Rightarrow3x+2y=\sqrt{32xy}\)
Vậy \(\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=\sqrt{\frac{8xy}{4\cdot8xy}}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)

3 tháng 8 2016

Vũ Quang Vinh : ở chỗ \(\left(3x-2y\right)^2=8xy\) , bn còn thiếu 1 giá trị nữa \(\orbr{\begin{cases}3x-2y=\sqrt{8xy}\\3x-2y=-\sqrt{8xy}\end{cases}}\)

28 tháng 8 2016

Ta có : \(9x^2+4x^2=20xy\)

\(\Leftrightarrow\begin{cases}9x^2-12xy+4y^2=8xy\\9x^2+12xy+4y^2=32xy\end{cases}\)

\(\Leftrightarrow\begin{cases}\left(3x-2y\right)^2=8xy\\\left(3x+2y\right)^2=32xy\end{cases}\)

\(A^2=\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}=\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{2}\)

28 tháng 2 2017

đúng

3 tháng 3 2017

= \(\dfrac{1}{2}\)nha

3 tháng 3 2017

\(\dfrac{3x-2y}{3x+2y}=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\dfrac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\dfrac{1}{4}\)

thay từ đề vào ok

12 tháng 11 2017

Bạn có nhìn rõ không? Nhớ tick mình nha Violympic toán 8

11 tháng 11 2017

M=\(\dfrac{1}{2}\)

nha bạn

liệu có cần giải hẳn ra không nhỉ?

27 tháng 12 2017

ta có: 9x^2+4y^2=20xy=> 9x^2-2.2.3xy+4y^2=8xy

=> (3x-2y)^2=8xy

mặt khác 9x^2+4y^2=20xy=> 9x^2+2.2.3xy+4y^2=32xy

=>(3x+2y)^2=32xy

=>(3x-2y)^2/(3x+2y)^2=8xy/32xy=1/4

=>(3x-2y)/(3x+2y)=căn 1/4=1/2 hoặc -1/2

mà x<2y=>x=-1/2

27 tháng 12 2017

Ta có:

\(9x^2+4y^2=20xy\)

\(\Leftrightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x^2-18xy-2xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\9x=2y\end{matrix}\right.\)

\(x< 2y\) nên \(9x=2y\Leftrightarrow x=\dfrac{2}{9}y\) (1)

Thay (1) vào A ta được:

\(A=\dfrac{3.\dfrac{2}{9}y-2y}{3.\dfrac{2}{9}y+2y}=\dfrac{y\left(\dfrac{2}{3}-2\right)}{y\left(\dfrac{2}{3}+2\right)}=\dfrac{-\dfrac{4}{3}}{\dfrac{8}{3}}=-\dfrac{1}{2}\)

Vậy..................................