K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

A=2(x+y)+3xy(x+y)+5x2y2(x+y)+2

A=2.0+3xy.0+5x2y2.0+2

A=2

B=xy(x+y)+2x2y (x+y)+5

B=xy.0+2x2y.0+5=5

12 tháng 5 2020

a,Ta có 2(x+y)+3xy(x+y)+5x2y2(x+y)+4

Xg thay x+y=0 vào là dc bn nhó

Chúc bn hok tốt

a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)

b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)

20 tháng 12 2023

\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)

Thay x+y=0 vào A

\(\Rightarrow\)A=0

Tui chẳng nghĩ gì về số cúp cả

7 tháng 4 2016

trả lời đi t đag cần gấp lắm

20 tháng 5 2018

Hình như đề sai. Đề đúng nè

M=x4+2x3y-2x3+x2y2-2x2y-x(x+y)+2x+3

M=(x4+x3y-2x3)+(x3y+x2y2-2x2y)-x(x+y-2)+3

M=x3(x+y-2)+x2y(x+y-2)-x(x+y-2)+3=x3.0+x2y.0-x.0+=0+0-0+3=3

Vậy đa thức M=3

3 tháng 6 2018

mơn

4 tháng 2 2023

Vì x + y = 0 nên \(N=0+2x^2y\left(x+y\right)+5=0+5=5\) 

Vậy N = 5 

8 tháng 5 2019

\(\left(2x^2y+x^2y^2-3xy^2+5\right)-M=2x^3y-5xy^2+4\)

\(M=\left(2x^2y+x^2y^2-3xy^2+5\right)-\left(2x^3y-5xy^2+4\right)\)

\(=2x^2+x^2y^2+2xy^2-2x^3y+1\)

Thay vào,ta có:

\(M=2\cdot\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{2}\right)^2\cdot\left(-\frac{1}{2}\right)^2-2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-\frac{1}{2}\right)+1\)

\(=\frac{1}{2}+\frac{1}{16}-\frac{1}{8}+1\)

tự tính nốt:3

8 tháng 5 2019

a) M=\(2xy^2+x^2y^2-3xy^2+5\) - \(2x^3y-5xy^2+4\)

=\(\left(2xy^2-3xy^2-5xy^2\right)\)\(x^2y^2\)+ ( 5+4 ) \(-2x^3y\)=\(-6xy^2\)\(x^2y^2\)+9 - \(2x^3y\)

bậc của đa thức là: 4

b) tại x=\(\frac{-1}{2}\); y=\(\frac{-1}{2}\)ta có:

M=\(-6xy^2+x^2y^2+9-2x^3y\)=\(-6.\left(\frac{-1}{2}\right)\left(\frac{-1}{2}\right)^2\)\(\left(\frac{-1}{2}\right)^2\left(\frac{-1}{2}\right)^2\)+ 9 - \(2\left(\frac{-1}{2}\right)^3\left(\frac{-1}{2}\right)\)

=\(3.\frac{1}{4}\)\(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}\)\(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}+9\)=\(\frac{3}{4}+\frac{36}{4}\)=\(\frac{39}{4}\)

vậy tại \(x=\frac{-1}{2}\)\(y=\frac{-1}{2}\)thì M=\(\frac{39}{4}\)