Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: (23+x)−(56−x)(23+x)−(56−x)
=23+x-56+x
=2x-33
=2⋅7−33=14−33=−19=2⋅7−33=14−33=−19
b) Ta có: 25−x−(29+y−8)25−x−(29+y−8)
=25−x−29−y+8=25−x−29−y+8
=4−x−y=4−x−y
=4−13−11=4−24=−20
A.ta có:(23+x)-(56+x)
=2x-33
=2×7-33
=14-33
=-19
B.ta có:25-x-(29+y-8)
=25-x-29-y+8
=4-x-y
=4-13
=4-24
=-20
1. A = 6x^3 - 3x^2 + 2.|x| + 4 với x = -23
Thay x = -23 vào biểu thức trên, ta có:
A = 6.(-23)^3 - 3.(-23)^2 + 2.|-23| + 4
A = -74539
2. B = 2.|x| - 3.|y| với x = 12; y = -3
Thay x = 12; y = -3 vào biểu thức trên, ta có:
B = 2.|12| - 3.|-3|
B = 15
3. |2 + 3x| = |4x - 3|
ta có: 2 + 3x = \(\hept{\begin{cases}4x-3\Leftrightarrow4x-3\ge0\Leftrightarrow x\ge\frac{3}{4}\\-\left(4x-3\right)\Leftrightarrow4x-3< 0\Leftrightarrow x< \frac{3}{4}\end{cases}}\)
Nếu x >= 3/4, ta có phương trình:
2 + 3x = 4x - 3
<=> 3x - 4x = -3 - 2
<=> -x = 5
<=> x = 5 (TM)
Nếu x < 3/4, ta có phương trình:
2 + 3x = -(4x - 3)
<=> 2 + 3x = -4x + 3
<=> 3x + 4x = 3 - 2
<=> 7x = 1
<=> x = 1/7 (TM)
Vậy: tập nghiệm của phương trình là: S = {5; 1/7}
a) x - (-16)
= x + 16
Thay x = 4 ta có :
4 + 16 = 20
Vậy.......
b) (-90) - ( y + 10 ) + 100
= -90 - y - 10 + 100
= 0 - y
= -y
Thay y = 10 ta có -10
Vậy........
a) Cách 1: Thay x = 7, ta có:
(23 + x) - (56 - x)
= (23 + 7) - (56 - 7)
= 30 - 49
= -19
Cách 2:
Thay x = 7, ta có:
(23 + x) - (56 - x)
= (23 + 7) - (56 - 7)
= 23 + 7 - 56 + 7
= 30 - 56 + 7
= (-26) + 7
=-19.
b) Cách 1: Thay x = 13, y = 11, ta có:
25 - x - (29 + y - 8)
= 25 - 13 - (29 + 11 - 8)
= 12 - 32
= -20.
Cách 2: Thay x = 13, y = 11, ta có:
25 - x - (29 + y - 8)
= 25 - 13 - (29 + 11 - 8)
= 25 - 13 - 29 - 11 + 8
= 12 - 29 - 11 + 8
= (-17) - 11 + 8
= (-28) + 8
=-20.
Thay x=y vào A ta được:
A= 3y+y=4y
Thay x=-2y vào B ta được:
B= -16y-5y=-21y
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
a) x+ 123 với x= -23
-23 + 123 = 100
b) -203 + y với y= 16
-203 + 16= -187
cảm ơn