Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sủa đề : tính \(D=\left(50^2+48^2+46^2+....+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+.....+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+....+\left(2-1\right)\left(2+1\right)\)
\(=50+49+48+.....+2+1\)
\(=\frac{50\left(50+1\right)}{2}=1275\)
D=(502-492)+(482-472)+...+(22-12)
= ( (50-49)(50+49)+(48-47)(48+47)+...+(2-1)(2+1)
= 50+49+48+47+...+2+1
=\(\frac{\left(50+1\right).50}{2}\)
=1275
Theo bài ra ta có:
\(50^2-49^2+48^2-47^2+....+2^2-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1\times\left(50+49\right)+1\times\left(48+47\right)+...+1\times\left(2+1\right)\)
\(=50+49+48+47+...+2+1\)
\(=\left(50+49\right)\times50\div2=2475\)
Vậy giá trị biểu thức = 2475
\(\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...\)
\(+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
(ta thấy trong mỗi tích đều có 1 thừa số bằng 1, VD: 50-49=1)
\(A=99+95+91+...+7+3\) số hạng cách nhau 4 đơn vị
Số số hạng của A là \(\left(99-3\right):4+1=25\)
=> \(A=\left(99+3\right).25:2=1275\)
Ta có: \(50^2-49^2+48^2-47^2+....+2^2-1^2\)
\(=\left(50^2-1^2\right)-\left(49^2-2^2\right)-\left(48^2-3^2\right)-...-\left(27^2-24^2\right)-\left(26^2-25^2\right)\)
\(=\left(51\cdot49\right)-\left(51\cdot47\right)-\left(51\cdot45\right)-....-\left(51\cdot3\right)-\left(51\cdot1\right)\)
=51(49-47-45-...-3-1)
=51*25
=1275
Đặt \(A=1+2+2^2+...+2^{49}-\left(2^{50}+3\right)\)
\(B=1+2+2^2+...+2^{49}\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{50}\)
\(\Rightarrow2B-B=\left(2+2^2+2^3+...+2^{50}\right)-\left(1+2+2^2+...+2^{49}\right)\)
\(\Rightarrow B=2^{50}-1\)
\(\Rightarrow A=2^{50}-1-\left(2^{50}+3\right)\)
\(\Rightarrow A=2^{50}-1-2^{50}-3\)
\(\Rightarrow A=\left(2^{50}-2^{50}\right)-\left(1+3\right)\)
\(\Rightarrow A=-4\)
Vậy A = -4
Tính giá trị biểu thức sau:
a, A= \(258^2-\dfrac{242^2}{254^2}-246^2\approx\) 6047,1
b, B= \(263^2+74.263+37^2=90000\)
c, C= \(136^2-92.136+46^2=8100\)
d, D = \(\left(50^2+48^2+46^2+...+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
= 22100 - 20825= 1275
\(M=31^2+2.31.19+19^2\)
\(\Rightarrow M=\left(31+19\right)^2\)
\(\Rightarrow M=50^2\)
\(\Rightarrow M=2500\)
\(N=45^2-90.35+25^2\)
\(\Rightarrow N=45^2-2.45.35+25^2\)
\(\Rightarrow N=\left(45-25\right)^2\)
\(\Rightarrow N=20^2=400\)
\(P=51^2-50^2+49^2-48^2+...+3^2-2^2+1^2\)
\(\Rightarrow P=\left(51-50\right)\left(51+50\right)+\left(49-48\right)\left(49+48\right)+...+\left(3-2\right)\left(3+2\right)+1\)
\(\Rightarrow P=101+97+...+5+1\)
\(\Rightarrow P=\frac{\left(101+1\right)\left[\left(101-1\right):2+1\right]}{2}\)
\(\Rightarrow P=102.51:2=51.51=51^2\)