K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

\(a+b+c=1\Rightarrow\hept{\begin{cases}ab+c=ab+c\left(a+b+c\right)\\bc+a=bc+a\left(a+b+c\right)\\ca+b=ca+b\left(a+b+c\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab+c=ab+ca+bc+c^2\\bc+a=bc+a^2+ab+ac\\ca+b=ca+ab+b^2+bc\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab+c=\left(b+c\right)\left(a+c\right)\\bc+a=\left(a+c\right)\left(a+b\right)\\ca+b=\left(b+c\right)\left(a+b\right)\end{cases}}\)

\(\Rightarrow P=\frac{\left(b+c\right)\left(a+c\right)}{\left(a+b\right)^2}.\frac{\left(a+c\right)\left(a+b\right)}{\left(b+c\right)^2}.\frac{\left(b+c\right)\left(a+b\right)}{\left(c+a\right)^2}=1\)

NV
5 tháng 2 2020

\(P=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)

\(=\frac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

20 tháng 6 2017

\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)

\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)

\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)

13 tháng 11 2019

Ap dụng hằng đẳng thức.

\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{b^2}{\left(a-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(c-a\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\)

\(=\frac{\left(a+b\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{a+b}{a-c}+\frac{b+c}{c-a}=\frac{a+b}{a-c}-\frac{b+c}{a-c}=1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Thay $1=a+b+c$ ta có:

\(ab+c=ab+c.1=ab+c(a+b+c)=(ab+ca)+c(b+c)=(c+a)(c+b)\)

\(bc+a=bc+a(a+b+c)=(bc+ab)+a(a+c)=b(a+c)+a(a+c)=(a+b)(a+c)\)

\(ca+b=ca+b(a+b+c)=(ca+ba)+b(b+c)=a(c+b)+b(b+c)=(b+a)(b+c)\)

Do đó:
\(P=\frac{ab+c}{(a+b)^2}.\frac{bc+a}{(b+c)^2}.\frac{ac+b}{(a+c)^2}=\frac{(ab+c)(bc+a)(ca+b)}{(a+b)^2(b+c)^2(c+a)^2}\)

\(=\frac{(c+a)(c+b)(a+b)(a+c)(b+c)(b+a)}{(a+b)^2(b+c)^2(c+a)^2}=\frac{(a+b)^2(b+c)^2(c+a)^2}{(a+b)^2(b+c)^2(c+a)^2}=1\)

13 tháng 1 2019

Sai rồ kết quả là \(\dfrac{1}{2}\) cơ nhưng mk không biết làm

8 tháng 1 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\Rightarrow\frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow c\left(a+b\right)\left(a+b+c\right)=ab\left(-a-b\right)\)

\(\Rightarrow\left(a+b\right)\left(ca+cb+c^2\right)+ab\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)

\(\Rightarrow\left(a+b\right)\left(c+a\right)\left(b+c\right)=0\)

=> Trong 3 số a,b,c có 2 số đối nhau.Giả sử a = -b thì a9 + b9 = 0.

Tương tự giả sử b = -c hay a = -c thì b99 + c99 = 0 hay c999 + a999 = 0

Vậy biểu thức cần tính bằng 0.

8 tháng 1 2017

bằng 0 quá dễ Hi Hi !!!