\(A=x\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2\)biết...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

\(A=x^3-y^3-21xy\)

\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)

\(A=7.\left(x^2+xy+y^2\right)-21xy\)

\(A=7.\left(x^2+xy+y^2+3xy\right)\)

\(A=7.\left(x^2+2xy+y^2+2xy\right)\)

\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)

\(A=7.\left(7^2+2xy\right)\)

\(A=7^3+14xy\)

Ngáo rồi @@

\(\)

26 tháng 5 2019

\(A=x^3-y^3-21xy\)

\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)

\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)

\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)

\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)

\(\Rightarrow A=7\left(x-y\right)^2\)

\(\Rightarrow A=7.7^2\)

\(\Rightarrow A=7.49\)

\(\Rightarrow A=343\)

8 tháng 6 2017

\(\left(x-3y\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=0\Rightarrow\hept{\begin{cases}x-3y=0\\y-1=0\\z+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3y\\y=1\\z=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=1\\z=-2\end{cases}}}\)

Thế vào A ta được \(2\left(3\right)+2\left(1\right)+\left(-2\right)=6\)

20 tháng 10 2019

a) Ta có : (2x - 1)100 + (x - y)102 = 0

<=> \(\hept{\begin{cases}2x-1=0\\x-y=0\end{cases}}\)

<=> \(\hept{\begin{cases}2x=1\\x=y\end{cases}}\)

<=> \(x=y=\frac{1}{2}\)

b) Ta có: |x - 3| + (x + y)2020 = 0

<=> \(\hept{\begin{cases}x-3=0\\x+y=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=-x\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

Với x = 3 và y = -3 thay vào biểu thức A :

A = \(3^2.\left[3+\left(-3\right)\right]^{100}=9.0^{100}=0\)

20 tháng 10 2019

a) Ta có (2x - 1)100 \(\ge\)0 với mọi x

              (x - y)102  \(\ge\)0 với mọi x,y

Do đó : (2x - 1)100 + (x - y)102 \(\ge\)0 với mọi x,y

Và (2x-1)100 + (x-y)102 = 0

<=> 2x - 1 = 0          <=> x = 1/2

và   x - y   = 0             và y = 1/2

b) Ta có : |x - 3| \(\ge\)0 với mọi x

           (x + y)2020\(\ge\)0 với mọi x,y

Do đó : |x - 3| + (x + y)2020 \(\ge\)0 với mọi x,y

Và |x - 3| + (x + y)2020 = 0

<=> x - 3 = 0                      <=> x = 3

   và x + y = 0                     và    y = -3

Rồi tự thay vào r tính A đi eiu :)