Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
Tính giá trị nhỏ nhất:
\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$
Vậy $A_{\min}=-3$
Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$
Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$
$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$
$=(x^2+5x)^2-36\geq 0-36=-36$
Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Tìm giá trị lớn nhất:
$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$
Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$
Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$
$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$
Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
a, \(A=\left(\frac{1-4x^2}{x^2+4x}\right)-\frac{3-4x}{3x}\)
\(=\left(\frac{3x\left(1-4x^2\right)}{3x\left(x^2+4x\right)}\right)-\frac{\left(3-4x\right)\left(x^2+4x\right)}{3x\left(x^2+4x\right)}\)
\(=\frac{3x-12x^3-3x^2-12x+4x^3-16x^2}{3x^2\left(x+4\right)}=\frac{3x-8x^3-19x^2}{3x^2\left(x+4\right)}\)
\(=\frac{3x^2\left(\frac{1}{x}-\frac{8x}{3}-\frac{19}{3}\right)}{3x^2\left(x+4\right)}=\frac{\frac{1}{x}-\frac{8x}{3}-\frac{19}{3}}{x+4}\)
Kiểm tra lại đề hộ mình nhá
ĐKXĐ của A là : \(\hept{\begin{cases}x^2+4x\ne0\\3x\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\times\left(x+4\right)\ne0\\x\ne\frac{0}{3}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+4\ne\\x\ne0\end{cases}0}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\\x\ne0\end{cases}-4}\)
Với \(x=\frac{1}{2}\left(TMĐKXĐ\right)\)Thì
A = \(\frac{1-4\times\left(\frac{1}{2}\right)^2}{\left(\frac{1}{2}\right)^2+4\times\frac{1}{2}}-\frac{3-4\times\frac{1}{2}}{3\times\frac{1}{2}}\)
\(=\frac{1-4\times\frac{1}{4}}{\frac{1}{4}+2}-\frac{3-2}{\frac{3}{2}}\)
\(=\frac{1-1}{\frac{1}{4}+\frac{8}{4}}-\frac{1}{\frac{3}{2}}\)
\(=\frac{0}{\frac{9}{4}}-1\div\frac{3}{2}\)
\(=0-1\times\frac{2}{3}\)
\(=0-\frac{2}{3}\)
\(=-\frac{2}{3}\)
Vậy tại \(x=\frac{1}{2}\)thì A có giá trị là \(-\frac{2}{3}\)
Bài 1 :
\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)
\(=x^2-4x+4-x+9=x^2-5x+13\)
Bài 2 :
a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)
\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)
b, Thay x = -4 ta được :
\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
Vì x=3
A=(x-1)2x-4x(x-1)+4x(x-1)
A=(x-1)2x
A=2x2-2x
A=2x(x-1)
A=2.3(3-1)
A=12
tớ thu gọn luôn -4x với +4x nên =0 cậu ak