\(x^{10}+20x^9+20x^8+...+20x^2+20x\) với x=-19
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

\(F=x^{10}+20x^9+20x^8+...20x^2+20x=x^9\left(x+19\right)+x^8\left(x+19\right)+...+x^2\left(x+19\right)+x\left(x+19\right)+x=x^9\left(-19+19\right)+x^8\left(-19+19\right)+...+x^2\left(-19+19\right)+x\left(-19+19\right)-19=x^9.0+x^8.0+...+x.0-19=-19\)

16 tháng 9 2021

bạn thức đêm nhỉ

16 tháng 9 2021

\(D=4x^2-2x+3x\left(x-5\right)=4x^2-2x+3x^2-15x=7x^2-17x=7\left(-1\right)^2-17\left(-1\right)=24\)

\(E=x^{10}-2020x^9+2020x^8-2020x^7+...+2020x^2-2020x=x^9\left(x-2019\right)-x^8\left(x-2019\right)+x^7\left(x-2019\right)-...-x^2\left(x-2019\right)+x\left(x-2019\right)-x=x^9\left(2019-2019\right)-...+x\left(2019-2019\right)-2019=-2019\)

 

16 tháng 9 2021

cảm ơn cậu nhưng có thể cho mk hỏi luôn câu F nữa đc ko ạ

 

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

Lời giải:
\(A=x^{10}+20x^9+20x^8+...+20x^3+20x^2+20x\)

\(=x^{10}+21x^9+21x^8+....+21x^3+21x^2+21x-(x^9+x^8+...+x^3+x^2+x)\)

\(=x^{10}-x.x^9-x.x^8-...-x.x^3-x.x^3-x.x-(x^9+x^8+...+x^3+x^2+x)\)

\(=-(x^9+x^8+....+x^2)-(x^9+x^8+x^3+x^2+x)\)

\(=-2(x^2+x^3+...+x^9)-x\)

\(Ax=-2(x^3+x^4+...+x^{10})-x^2\)

\(Ax-A=-2(x^3+x^4+...+x^{10})-x^2+2(x^2+...+x^9)+x\)

\(A(x-1)=x^2+x-2x^{10}\)

\(A=\frac{x^2+x-2x^{10}}{x-1}=\frac{21^2-21-2.21^{10}}{-22}=\frac{21^{10}-210}{11}\)

24 tháng 8 2020

Thay x = 20 vào biểu thức B ta có

\(B=x^6-x.x^5-x.x^4-x.x^3-x.x^2-x.x+3\)

    \(=x^6-x^6-x^5-x^4-x^3-x^2+3\)

    \(=-x^5-x^4-x^3-x^2+3\)

    \(=-x^2\left(x^3+x^2+x+1\right)+3\)

    \(=-20^2\left(20^3+20^2+20+1\right)+3\)

    \(=-400\left(8000+400+20+1\right)+3\)

     \(=-400.8421+3\)  

       \(=-3368397\)

Sửa đề: x=21

=>x-1=20

\(A=x^{10}+x^9\left(x-1\right)+x^8\left(x-1\right)+...+x^3\left(x-1\right)+x^2\left(x-1\right)+x\left(x-1\right)\)

\(=x^{10}+x^{10}-x^9+x^9-x^8+...+x^3-x^2+x^2-x\)

\(=2x^{10}-x=2\cdot21^{10}-21\)

22 tháng 7 2015

bài này tớ ko hiểu qui luật