Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)
\(=-\frac{1}{5}x^6y^3z^3\)
b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:
\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)
a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)
b) Với x = -1 ; y = -2 , z = 3
Thế vào ba đơn thức trên và đơn thức tích ta được :
\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)
\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)
\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)
\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)
a)
Ta có \(xy+x^2y^2+x^3y^3+...+x^{10}y^{10}\\ =\left(xy+x^3y^3+x^5y^5+...+x^9y^9\right).\left(x^2y^2+x^4y^4+x^6y^6+...+x^{10}y^{10}\right)\)
Thay x= -1 và y= 1 vào biểu thức trên ta được\(\left(-1\right)1+\left(-1\right)^21^2+...+\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)1+\left(-1\right)^31^3+...+\left(-1\right)^91^9\right].\left[\left(-1\right)^21^2+\left(-1\right)^41^4+...+\left(-1\right)^{10}1^{10}\right]\\ =\left(-1-1-...-1\right)+\left(1+1+...+1\right)\\ =-5+5=0\)
b)
Ta có:\(xyz+x^2y^2z^2+x^3y^3z^3+...+x^{10}y^{10}z^{10}\\ =\left(xyz+x^3y^3z^3+x^5y^5z^5+...+x^9y^9z^9\right).\left(x^2y^2z^2+x^4y^4z^4+x^6y^6z^6+...+x^{10}y^{10}z^{10}\right)\)
Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được\(\left(-1\right)\left(-1\right)1+\left(-1\right)^2\left(-1\right)^21^2+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)\left(-1\right)1+\left(-1\right)^3\left(-1\right)^31^3+...+\left(-1\right)^9\left(-1\right)^91^9\right].\left[\left(-1\right)^2\left(-1\right)^21^2+\left(-1\right)^4\left(-1\right)^41^4+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\right]\\ =\left(1+1+...+1\right)+\left(1+1+...+1\right)\\ =5+5=10\)
Ta có xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)
Thay x= -1 và y= 1 vào biểu thức trên ta được(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0
b)
Ta có:xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)
Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được(−1)(−1)1+(−1)2(−1)212+...+(−1)10(−1)10110=[(−1)(−1)1+(−1)3(−1)313+...+(−1)9(−1)919].[(−1)2(−1)212+(−1)4(−1)414+...+(−1)10(−1)10110]=(1+1+...+1)+(1+1+...+1)=5+5=10
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
bài này ở quyển toán nâng cao và các chuyên đề bn ak
5rxdjexjgntrujnxgr6jexs6ue6thfydjytudcjxtyu45yuej8tuxr5ts
a, x.y +x2y2 + x3y3+ .... + x10y10
= x.y. ( 1 + 12 + 13 + ..... + 110 )
= x.y. ( 1 + 1 + 1 + ...... + 1 )
= x.y.10
Thay x=-1, y=1 vào đa thức vừa tìm được ở trên, ta có:
(-1) . 1 . 10 = -10
Vậy giá trị của đa thức vừa tìm được là -10 khi x=-1, y=1
b, xyz + x2y2z2 + x3y3+.....+ x10y10
= xyz ( 1 + 12 + 13 + ..... + 110 )
= xyz ( 1 + 1 + 1 + ... + 1 )
= xyz .10
Thay x=1, y=-1, z=-1 vào đa thức vừa tìm được, ta có:
1 . (-1) . (-1) . 10 = 10
Vậy giá trị của đa thức vừa tìm được là 10 khi x=1, y=-1, z=-1
a)\(15\cdot2^3\cdot\left(-2\right)^3\cdot3^3=-25920\)
b)\(\frac{-1}{3}\cdot1^2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-2\right)^3=\frac{-1}{3}\)
c)\(\frac{2}{5}a\cdot\left(-3\right)^3\cdot\left(-1\right)^6\cdot2=\frac{-108}{5}a\)