K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Phân tích :

a, = 2 . (4x^2-1) = 2.(2x-1).(2x+1)

b, = (x^2-6x+9) - y^2 = (x-3)^2 - y^2 = (x-y-3).(x+y-3)

k mk nha

20 tháng 11 2017

Phải là tìm GTNN của Q chứ

24 tháng 6 2016

a/ x2 + 6x + 9 = (x + 3)2 = (x + 3)(x + 3)

b/ 10x - 25 - x2 = -x2 + 10x - 25 = -(x2 -10x + 25) = -(x - 5)2 = -(x - 5)(x - 5)

c/ \(8x^3+\frac{1}{8}=\left(2x\right)^3+\left(\frac{1}{2}\right)^3=\left(2x+\frac{1}{2}\right)\left(4x^2-x+\frac{1}{4}\right)\)

14 tháng 8 2016

Đăng từng bài thôi bạn ơi

14 tháng 8 2016

cj on ruayf hả

24 tháng 11 2015

a) \(x^3-5x^2+8x-4=\left(x^3-x^2\right)-4\left(x^2-x\right)+4\left(x-1\right)=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

                                             \(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

b) \(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\) chia hết cho 2x-3  => 7 chia hết cho 2x -3 

=> 2x -3 thuộc U(7) ={-7;-1;1;7}

+2x-3 =-7 => x =-2

+2x-3 =-1 => x =1

+2x-3 =1 => x =2

+2x -3 =7 => x =5

29 tháng 6 2017

\(x^2-x+1=x^2-2\times x\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)\(\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

vì \(\left(x-\frac{1}{2}\right)^2\ge0\)

=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

vậy Min A= \(\frac{3}{4}\)dấu bằng xảy ra khi và chỉ khi \(x=\frac{1}{2}\)

29 tháng 6 2017

ở trên bạn bỏ hộ mk 1 phân số \(\frac{3}{4}\)đi nhé mk viết thừa.

23 tháng 12 2016

1.xy(14x-21y+28xy) 

2. a)\(x^2-4\ne0\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)\(\frac{x^2-2x-2x+4}{x^2-4}=\frac{x\left(x-2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\) với đk (a)=> \(b=\frac{x-2}{x+2}=1-\frac{4}{x+2}\)

c) \(C=\frac{-3-2}{-3+2}=-\frac{5}{-1}=5\)

23 tháng 12 2016

1. \(14x^2y-21xy^2+28x^2y^2\)

\(=7xy\left(2x-3y+4xy\right)\)

2.a)Để phân thức được xác định thì \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow\orbr{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b) \(\frac{x^2-4x+4}{x^2-4}=\frac{x^2-2.x.2+2^2}{x^2-2^2}\)

\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

c)Thay x=-3 ta có:

\(\frac{-3-2}{-3+2}=\frac{-5}{-1}=5\)

8 tháng 9 2018

câu 1 

a, 5x - x 2 + 2xy - 5y 

= 5x - x 2 + xy + xy - 5y 

= ( 5x - 5y ) - ( x2 - xy ) + xy 

= 5 ( x-y ) - x(x-y ) + xy 

= (5-x) ( x-y) + xy 

mik làm dc mỗi câu a ! 

30 tháng 10 2016

Thay 12 = x + 1 vào biểu thức trên, ta có:

x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + 111

= x4 - x4 - x3 + x3 + x2 - x2 - x + 111

= 111 - x (*)

Thay x = 11 vào (*), ta có:

111 - 11

= 100

Vậy giá trị của biểu thức trên là 100 tại x = 11

(x + y + z)3 - x3 - y3 - z3

= x3 + y3 + z3 + 3(x + y)(x + z)(y + z) - x3 - y3 - z3

= 3(x + y)(x + z)(y + z)

A = 2x2 + 10x - 1

\(=2\left(x^2+5x+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)

\(MinA=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)

 

30 tháng 10 2016

câu2

(x+y+z)3 - x3 - y3 - z3 =(x+y)3 +z3+ 3(x+y+z)(x+y)z -x3- y3 -z3

= x3 +y3 +3xy(x+y) + z3 +3(x+y+z)(x+y)z -x3 -y3 - z3

=3(x+y)(xy+xz+yz+z2)

=3(x+y)(y+z)(x+z)

vì ko có time nên mk làm hơi tắt

22 tháng 7 2020

\(a^2+a+1=0\Rightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}=0\Rightarrow a\in C\)

Vì vậy P không tồn tại

Lớp 8 nên làm như này nhé :))

3 tháng 4 2019

a) \(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

5 tháng 4 2019

câu b đâu