Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-5x^2+8x-4=\left(x^3-x^2\right)-4\left(x^2-x\right)+4\left(x-1\right)=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
b) \(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\) chia hết cho 2x-3 => 7 chia hết cho 2x -3
=> 2x -3 thuộc U(7) ={-7;-1;1;7}
+2x-3 =-7 => x =-2
+2x-3 =-1 => x =1
+2x-3 =1 => x =2
+2x -3 =7 => x =5
\(x^2-x+1=x^2-2\times x\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)\(\frac{3}{4}\)
= \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\)
=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
vậy Min A= \(\frac{3}{4}\)dấu bằng xảy ra khi và chỉ khi \(x=\frac{1}{2}\)
ở trên bạn bỏ hộ mk 1 phân số \(\frac{3}{4}\)đi nhé mk viết thừa.
1.xy(14x-21y+28xy)
2. a)\(x^2-4\ne0\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b)\(\frac{x^2-2x-2x+4}{x^2-4}=\frac{x\left(x-2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\) với đk (a)=> \(b=\frac{x-2}{x+2}=1-\frac{4}{x+2}\)
c) \(C=\frac{-3-2}{-3+2}=-\frac{5}{-1}=5\)
1. \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\left(2x-3y+4xy\right)\)
2.a)Để phân thức được xác định thì \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow\orbr{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(\frac{x^2-4x+4}{x^2-4}=\frac{x^2-2.x.2+2^2}{x^2-2^2}\)
\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
c)Thay x=-3 ta có:
\(\frac{-3-2}{-3+2}=\frac{-5}{-1}=5\)
câu 1
a, 5x - x 2 + 2xy - 5y
= 5x - x 2 + xy + xy - 5y
= ( 5x - 5y ) - ( x2 - xy ) + xy
= 5 ( x-y ) - x(x-y ) + xy
= (5-x) ( x-y) + xy
mik làm dc mỗi câu a !
Thay 12 = x + 1 vào biểu thức trên, ta có:
x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + 111
= x4 - x4 - x3 + x3 + x2 - x2 - x + 111
= 111 - x (*)
Thay x = 11 vào (*), ta có:
111 - 11
= 100
Vậy giá trị của biểu thức trên là 100 tại x = 11
(x + y + z)3 - x3 - y3 - z3
= x3 + y3 + z3 + 3(x + y)(x + z)(y + z) - x3 - y3 - z3
= 3(x + y)(x + z)(y + z)
A = 2x2 + 10x - 1
\(=2\left(x^2+5x+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
\(MinA=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)
\(a^2+a+1=0\Rightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}=0\Rightarrow a\in C\)
Vì vậy P không tồn tại
Lớp 8 nên làm như này nhé :))
a) \(x^3+y^3+z^3-3xyz\)
\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Phân tích :
a, = 2 . (4x^2-1) = 2.(2x-1).(2x+1)
b, = (x^2-6x+9) - y^2 = (x-3)^2 - y^2 = (x-y-3).(x+y-3)
k mk nha
Phải là tìm GTNN của Q chứ