Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Thay\) \(x=-4;y=-3\) \(vào\) biểu thức : (-15) . x + (-7) .y
Ta được : (-15) . (-4) + (-7) . (-3)
= 60 + 21
= 81
Vậy giá trị cần tìm của biểu thức là 81
b) Thay x= -4; y= -3 vào biểu thức : (315 - 427) x + (46-89) y
Ta được : (315 - 427). (-4) + ( 46 - 89) . (-3)
= -112 . (-4) + (-43) . (-3)
= 448 + 129
= 577
Vậy giá trị cần tìm của biểu thức là 577
a) Thay a = 8 vào tích ta được:
(-125).(-13).(-a)
= (-125).(-13).(-8) (do có 3 (số lẻ) số nguyên âm nên tích có dấu "-")
= -125.8.13
= -1000.13
= -13000
b) Thay b = 20 vào tích ta được:
(-1).(-2).(-3).(-4).(-5).20
= -2.3.4.5.20 (do có 5 (số lẻ) số nguyên âm nên tích có dấu "-")
= -6.4.100
= -24.100
= -2400
a) (-125) . (-13) . (-a), với a = 8. Thay a = 8 vào ta có biểu thức:
= (-125) . (-13) . (-8)
= 13 000
b) (-1) . (-2) . (-3) . (-4) . (-5) . b, với b = 20. Thay b = 20 vào ta có biểu thức:
= (-1) . (-2) . (-3) . (-4) . (-5) . 20
= -2 400
Đáp số: a) -13 000; b) -2 400.
a, A =I x - 3I +10
\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc bằng 0 vs mọi x)
Dấu ''='' xảy ra khi x-3=0
<=>x = 3
Vậy giá trị nhỏ nhất của A là 10 khi x = 3
b, \(B=-7+\left(x-1\right)^2\)
\(\Rightarrow B\ge-7\forall x\)
Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
Vậy giá trị nhỏ nhất của B là -7 khi x=1
c, C= -3 - I x -2I
\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2
Vây giá trị lớn nhất của C là - 3 khi x = 2.
d, \(D=15-\left(x-2\right)^2\)
\(\Rightarrow D\le15\)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2
Vây giá trị lớn nhất của D là 15 khi x = 2
a) Ta có: \(-\left|x\right|\le0\)
\(-\left(y+4\right)^4\le0\)
\(\Rightarrow-\left|x\right|-\left(y+4\right)^4\le0\)
\(\Rightarrow A=10-\left|x\right|-\left(y+4\right)^4\le10\)
Vậy \(MAX_A=10\) khi \(x=0;y=-4\)
b) Hình như sai đề thì phải
Ta có : A = | x - 3 | + 10 > 0
Vì | x - 3 |\(\ge\)0
Dấu = Xảy ra <=> x = 3
Vậy gtnn của A = 10 <=> x = 3
Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left|x-3\right|+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin =10 khi và chỉ khi x = 3
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmin = -7 khi và chỉ khi x = 1
Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Cmax = -3 khi và chỉ khi x = 2
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Dmax = 15 khi và chỉ khi x = 2
c,\(43+x=2.5^2-\left(x-57\right)\)
\(< =>43+x=50-x+57\)
\(< =>2x=50+57-43\)
\(< =>x=\frac{107-43}{2}=32\)
d,\(-3.2^2\left(x-5\right)+7\left(3-x\right)=5\)
\(< =>-12.\left(x-5\right)+7.\left(3-x\right)=5\)
\(< =>-12x+60+21-7x=5\)
\(< =>-19x=5-81=-76\)
\(< =>x=-\frac{76}{-19}=4\)
Bài 2:
a) \(A=\left|x-3\right|+10\)
Vì \(\left|x-3\right|\ge0\forall x\)\(\Rightarrow\left|x-3\right|+10\ge10\forall x\)
hay \(A\ge10\)
Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(minA=10\Leftrightarrow x=3\)
b) \(B=-7+\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-7+\left(x-1\right)^2\ge-7\forall x\)
hay \(B\ge-7\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=-7\Leftrightarrow x=1\)
a) x+(−10)x+(−10), biết x=−28x=−28
(-28)+(-10)=(-38)
b) (−267)+y, biết y=−33
(-267)+(-33)=(-300)
\(A=\left(a+b\right)+\left(c-d\right)-\left(c+a\right)-\left(b-d\right)\)
\(A=a+b+c-d-c-a-b+d\)
\(A=\left(a-a\right)+\left(b-b\right)+\left(c-c\right)+\left(d-d\right)\)
\(A=0\)
a) Ta có: x = 4.
\(\Rightarrow\left(-75\right)\cdot\left(-27\right)\cdot\left(-x\right)=\left(-75\right)\cdot\left(-27\right)\cdot\left(-4\right)\\ =\left(-75\right)\cdot\left(-4\right)\cdot\left(-27\right)\\ =300\cdot\left(-27\right)\\ =-8100\)
Vậy khi x = 4 thì giá trị biểu thức \(\left(-75\right)\cdot\left(-27\right)\cdot\left(-x\right)\) là -8100.
b) Ta có: a = -10
\(\Rightarrow1\cdot2\cdot3\cdot4\cdot5\cdot a=1\cdot2\cdot3\cdot4\cdot5\cdot\left(-10\right)\\ =120\cdot\left(-10\right)\\ =-1200\)
Vậy khi a = -10 thì giá trị biểu thức \(1\cdot2\cdot3\cdot4\cdot5\cdot a\) là -1200.
Tính giá tri của biểu thức :
a) \(\left(-75\right).\left(-27\right).\left(-x\right)\) với \(x=4\)
Thay \(x=4\) vào biểu thức trên ta có:
\(\left(-75\right).\left(-27\right).\left(-4\right)\\ =\left[\left(-75\right).\left(-4\right)\right].\left(-27\right)\\ =300.\left(-27\right)\\ =-8100\)
Vậy biểu thức trên có giá trị bằng -8100 nếu x = 4
b) \(1.2.3.4.5.a\) với \(a=-10\)
Thay a = -10 vào biểu thức trên ta có:
\(1.2.3.4.5.\left(-10\right)\\ =120.\left(-10\right)\\ =-1200\)
Vậy biểu thức trên có giá trị bằng -1200 nếu a = -10