Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=\left(2x-1\right)\left(2y-1\right)\)
\(=4xy-2x-2y+1\)
\(=4xy-2\left(x+y\right)+1\)
Thay x + y = 10 và xy = 16
\(\Rightarrow M=64-20+1=45\)
Vậy M = 45
\(M=\left(2x-1\right)\left(2y-1\right)\)
\(M=2x\left(2y-1\right)-1\left(2y-1\right)\)
\(M=4xy-2x-2y-1\)
\(M=4xy-2\left(x+y\right)-1\)
\(M=64-20+1=64-19=45\)
\(M=\left(2x-1\right)\left(2y-1\right)=2x\left(2y-1\right)-\left(2y-1\right)\)
\(=4xy-2x-2y+1\)
\(=4xy-2\left(x+y\right)+1\)
\(=4.16-2.10+1\)
\(=45\)
Vậy biểu thức M = 45 tại x + y = 10 và xy = 16
ta có M=(2x-1)(2y-1)
= 2x.(2y-1) - (2y-1)
=2x.2y-2x.1-2y+1
=4xy-2x-2y+1
=4xy-2.(x+y)+1
x+y=10, xy=16
=>4.16 -2.10+1
=64-20+1
=45
vậy M=45
Ta tính được x = 2; y = 8. Thay x và y vào biểu thức M=(2x-1)(2y-1)
ta có:
M=(2x-1)(2y-1) = (2.2-1)(2.8-1) = 3.15 = 45
Vậy giá trị của biểu thức M=(2x-1)(2y-1) là 45.
a) \(M=\left(2x-1\right)\left(2y-1\right)=4xy-2x-2y+1=4\left(xy\right)-2\left(x+y\right)+1\)
\(M=4.16-2.10+1=45\)
b) Ta có:
\(\hept{\begin{cases}\left(x+2\right)^{2010}\ge0\\|y-\frac{1}{5}|\ge0\end{cases}}\left(\forall x,y\in R\right)\)
Khi đó \(N=\left(x+2\right)^{2010}+|y-\frac{1}{5}|-10\ge-10\)
Dấu "=" xảy ra khi x + 2 = 0 và y - 1/5 = 0
Suy ra x = -2 và y = 1/5
ta có :
c = (x+y) * (xy +x+y+2)
c = 3 * ( -5 ) + 3 + 2
c= -10
M = (2x - 1)(2y - 1)
= 2x(2y - 1) - (2y - 1)
= 4xy - 2x - 2y + 1
= 4xy - 2(x + y) + 1
= 4 . 16 - 2 . 10 + 1
= 45
bài này dễ mà @@
M = (2x-1).(2y-1)
= 4xy - 2y -2x + 1
= 4xy - 2(x+y) + 1
= 4.16 - 2.10 + 1
= 45