Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+2+3+...+100\right)^2\cdot\left(a+2b\right)^4\cdot\left(a+3b\right)^5\cdot\left(\dfrac{4}{5}-\dfrac{4}{5}\right)^6\)
=0
`Answer:`
a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)
Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)
\(E=\frac{3a+2b}{4a-3b}\)
\(=\frac{3k+2.3k}{4k-3.3k}\)
\(=\frac{3k+6k}{4k-9k}\)
\(=\frac{9k}{-5k}\)
\(=-\frac{9}{5}\)
b. Thay `a-b=5` vào biểu thức `F`, ta được:
\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)
\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)
\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)
\(=1+1\)
\(=0\)
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
tính giá trị của biểu thức:
A=(12+22+32+...+192+202).(a+b).(a+2b).(a+3b)
với a=\(\frac{3}{5}\),b= -0,2
\(\dfrac{a}{b}=\dfrac{1}{3}\)
nên b=3a
\(E=\dfrac{3a+2b}{4a-3b}=\dfrac{3a+6a}{4a-9a}=\dfrac{9}{-5}=-\dfrac{9}{5}\)
a-b=5 nên a=b+5
\(F=\dfrac{3\left(b+5\right)-5}{2\left(b+5\right)+b}-\dfrac{4b+5}{b+5+3b}\)
\(=\dfrac{3b+10}{3b+10}-1=1-1=0\)
(a-3)^2+(3b+1)^2<=0
=>a-3=0 và 3b+1=0
=>a=3 và b=-1/3
P=28*3^2*(-1/3)-9*3(-1/3)^2
=-28-3=-31
Bài 3 :
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : \(A=\left(x-2\right)^2-4\ge-4\forall x\)
Vậy \(A_{min}=-4\) khi x = 2
B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)
B2:
a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)
\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)
B3:
Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x = 2
Vậy GTNN của A = -4 khi x = 2