K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai rồi bạn

16 tháng 3 2022

Sửa đề: f(x) = x² - 4x + 3

a) f(0) = 0 - 4.0 + 3 = 3

f(1) = 1 - 4.1 + 3 = 0

f(3) = 9 - 4.3 + 3 = 0

b) x = 1 và x = 3 là nghiệm của đa thức f(x) vì f(1) = 0 và f(3) = 0

2 tháng 3 2022

a, Thay x = -2 ; y = 3 ta được 

\(A=\dfrac{4\left(-2\right)-5.3}{8\left(-2\right)-7.3}=\dfrac{-8-15}{-16-21}=\dfrac{23}{37}\)

b, Ta có \(\dfrac{x}{y}=\dfrac{5}{4}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow x=5k;y=4k\)

Thay vào ta được \(A=\dfrac{4.5k-5.4k}{8.5k-7.4k}=\dfrac{0}{40k-28k}=0\)

2 tháng 3 2022

undefined

31 tháng 8 2016

\(\text{Ta có: |a| = }\frac{1}{3}\Leftrightarrow a=\orbr{\begin{cases}\frac{1}{3}\\-\frac{1}{3}\end{cases}}\)

\(\text{Ta có: |b| = }0,25\Leftrightarrow b=\orbr{\begin{cases}0,25\\-0.25\end{cases}}\)

Thay a. b vào ta có:

A = 

31 tháng 8 2016

theo từng TH à  Edogawa Conan

Biểu thức đâu hở bạn

7 tháng 4 2020

Biểu thức đâu bạn

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)

2) 

a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2

b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1

3)

\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)

b) 

th1: nếu x<-3/2 => B=-2x-3+2x+2=-1

th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5

ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)

th3: nếu x>-1 => B=2x+3-2x-2=1=>

Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

12 tháng 8 2018

\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)

Nhận thấy:  \(\left|2x+1\right|\ge0\);     \(\left|x+y-\frac{1}{2}\right|\ge0\)

=>   \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)

Dấu "=" xảy ra  <=>  \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

đến đây bạn thay x,y tìm đc vào A để tính nhé