Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) thay x=\(\frac{-1}{3}\) vào biểu thức A ta có:
A=\(5.\left(\frac{-1}{3}\right)^3-3.\left(\frac{-1}{3}\right)^2-\frac{1}{3}\)
=\(5.\frac{-1}{27}-3.\frac{1}{9}+\frac{1}{3}\)
=\(\frac{-5}{27}-\frac{3}{9}+\frac{1}{3}\)
=\(\frac{-14}{27}+\frac{1}{3}\)
=\(\frac{-5}{27}\)
a) Thay giá trị x vào biểu thức , ta có :
\(A=5.\left(-\frac{1}{3}\right)^3-3.\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{3}\right)\)
\(A=5.\left(-\frac{1}{27}\right)-3.\frac{1}{9}+\frac{1}{3}\)
\(A=-\frac{5}{27}-\frac{1}{3}+\frac{1}{3}\)
\(A=-\frac{14}{27}+\frac{1}{3}\)
\(A=-\frac{5}{27}\)
b) Thay giá trị x vào biểu thức , ta có :
\(3.\left(-\frac{2}{3}\right)^2+5.\left(-\frac{2}{3}\right)^3\)
\(=3.\frac{4}{9}+5.\left(-\frac{8}{27}\right)\)
\(=\frac{4}{3}+\left(-\frac{40}{27}\right)\)
\(=-\frac{4}{27}\)
a) *TH1: x = 1/2 *TH2: x = -1/2
=> A = 3.1/4 - 2.1/2 + 1 => A = 3.1/4 - 2.(-1/2) + 1
A = 3/4 - 1 + 1 A = 3/4 + 1 + 1
A = (3 - 4 + 4)/4 A = (3 + 4 + 4)/4
A = 3/4 A = 11/4
Vậy A = 3/4 hoặc A = 11/4
b, B = (29.103)/(24.5.103 + 7000) = (29.103)/(24.5.103 + 103.7) = (29.103)/[103(24.5.7) = 29/(24.5.7) = 29/560
- Bạn xem có đúng hay sai ko nhé !!? Phần c, mk nghĩ cũng tựa như phần a thôi tại là nhân nên mk không dám chắc.
1) Thay x=16 vào A ta có:
A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)
A=\(\frac{16+4+1}{4+2}\)
A=\(\frac{21}{6}=\frac{7}{2}\)
\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)
\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)
\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)
B1
a) \(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):16\frac{2}{3}=0\)
\(1-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=0\)
\(1-\left(x-\frac{11}{6}\right).\frac{3}{50}=0\)
\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1-0\)
\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1\)
\(x-\frac{11}{6}=1:\frac{3}{50}\)
\(x-\frac{11}{6}=\frac{50}{3}\)
\(x=\frac{50}{3}+\frac{11}{6}\)
\(x=\frac{37}{2}\)
b) \(\frac{3}{5}+\frac{5}{7}:x=\frac{1}{3}\)
\(\frac{5}{7}:x=\frac{1}{3}-\frac{3}{5}\)
\(\frac{5}{7}:x=-\frac{4}{15}\)
\(x=\frac{5}{7}:\left(-\frac{4}{15}\right)\)
\(x=-\frac{75}{28}\)
c) \(\left(4\frac{1}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)
\(\left(\frac{9}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)
\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{9}.\frac{7}{4}\)
\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{2}\)
\(\frac{2}{5}.x=\frac{9}{2}-\frac{11}{2}\)
\(\frac{2}{5}.x=-1\)
\(x=-1:\frac{2}{5}\)
\(x=-\frac{5}{2}\)
B2
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{2}{6}\right).24:5-\frac{9}{22}:\frac{15}{121}\)
\(=\left(\frac{3}{6}+\frac{2}{6}+\frac{2}{6}\right).24:5-\frac{9}{22}.\frac{121}{15}\)
\(=\frac{7}{6}.24:5-\frac{33}{10}\)
\(=28:5-\frac{33}{10}\)
\(=\frac{28}{5}-\frac{33}{10}\)
\(=\frac{56}{10}-\frac{33}{10}\)
\(=\frac{23}{10}\)
b) \(\frac{5}{14}+\frac{18}{35}+\left(1\frac{1}{4}-\frac{5}{4}\right):\left(\frac{5}{12}\right)^2\)
\(=\frac{25}{70}+\frac{36}{70}+\left(\frac{5}{4}-\frac{5}{4}\right):\frac{25}{144}\)
\(=\frac{61}{70}+0:\frac{25}{144}\)
\(=\frac{61}{70}+0\)
\(=\frac{61}{70}\)
a) Thay x=\(-\frac{1}{3}\) vào A ta được
A=\(5\cdot\left(-\frac{1}{3}\right)^3-3\cdot\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{3}\right)\)
\(=5\cdot\left(-\frac{1}{27}\right)-3\cdot\frac{1}{9}+\frac{1}{3}\)
\(=-\frac{5}{27}\)
b) \(3x^2+5x^3=x^2\left(3+5x\right)\)
Thay x=\(\frac{-2}{3}\) vào biểu thức ta có
\(x^2\left(3+5x\right)=\left(-\frac{2}{3}\right)^2\cdot\left(3+5\cdot\frac{-2}{3}\right)=\frac{4}{9}\cdot\frac{-1}{3}=-\frac{4}{27}\)