Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
A=\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{2017.2019}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)..........\left(\frac{2017.2019+1}{2017.2019}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.............\frac{4072324}{2017.2019}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...................\frac{2018^2}{2017.2019}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{\left(2.3.4..........2018\right).\left(2.3.4............2018\right)}{\left(1.2.3............2017\right).\left(3.4.5..........2019\right)}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2018.2}{1.2019}\right)=\frac{2018.2}{2.2019}=\frac{2018}{2019}\)
Vậy \(A=\frac{2018}{2019}\)
Chúc bn học tốt
\(A:\frac{1}{2}=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{2017.2019+1}{2017.2019}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{2018^2}{2017.2019}\)
\(=\frac{2.2.3.3.4.4.....2018.2018}{1.3.2.4.3.5....2017.2019}\)
\(=\frac{2.3.4.....2018}{1.2.3.4.....2017}.\frac{2.3.4....2018}{3.4.5.....2019}\)
\(=2018.\frac{2}{2019}\)
\(=\frac{4036}{2019}\)
\(\Rightarrow A=\frac{4036}{2019}.\frac{1}{2}\)
\(A=\frac{2018}{2019}\)
Vì \(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|\ge0\forall x\)
\(\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\dfrac{1}{1\cdot2}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|=x+\dfrac{1}{1\cdot2}+...+x+\dfrac{1}{99\cdot100}\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1\cdot2}+...+\dfrac{1}{99\cdot100}\right)=100x\)
\(\Rightarrow99x+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)=100x\)
\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}=x\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=x\)
\(\Rightarrow x=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Ta có
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\) nên
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)
\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)
\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)
Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)
1)\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{2008}-1\right).\left(\frac{1}{2009}-1\right)=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2008}{2009}\right)=\frac{1.2.3...2008}{2.3.4....2009}=\frac{1}{2009}\)
2)\(A=\frac{x-7}{2}\)
Do 2>0 =>A>0 <=>x-7>0<=>x>7
Vậy x>7 thì A>0
3)\(A=\frac{x+3}{x-5}\)
Do x+3>x-5 =>A<0<=>x+3>0 và x-5<0
<=>-3<x<5
Vậy -3<x<5 thì A<0
\(A=\frac{1}{1.2}-x+\frac{1}{2.3}-x+...+\frac{1}{100.101}-x+100x\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}-100x+100x\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)