Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=3(22 +1)(24+1)(28+1)(216+1)
=(4-1)(22+1)(24+1)(28+1)(216+1)
=[(22-1)(22+1)](24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)
=232-1
B=3(22 +1)(24+1)(28+1)(216+1)
=(4-1)(22+1)(24+1)(28+1)(216+1)
=[(22-1)(22+1)](24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)
=232-1
\(.\)M= bn ghi lại đề nha ^.^
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)
k cho mình nha bn thanks nhìu <3 <3 (^3^)
2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)
Đặt \(x^2+5x+4=t\)
(1) = \(t.\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-25\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)(2)
Thay \(t=x^2+5x+4\)vào (2) ta có:
(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
k mình nha bn <3 thanks
\(1,H=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)[\left(a+b\right)^2-3ab]+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)
\(=1-ab+3ab\left(1-2ab+6a^2b^2\right)\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
\(=1\)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
a: \(=\dfrac{3^8-3^6+3^6\cdot2^3}{5^3}=\dfrac{3^8-3^6\left(1-2^3\right)}{5^3}=\dfrac{11664}{125}\)
b: \(=\dfrac{7^4\cdot4-7^3}{7^3}=7\cdot4-1=27\)
c: \(=28^4-28^4+1=1\)
d: \(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=3^{32}\)
Đặt A = ( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
=> 2A = 2.( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 34 - 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 38 - 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 316 - 1 )( 316 + 1 )( 332 + 1 )
= ( 332 - 1 )( 332 + 1 )
= 364 - 1
2A = 364 - 1 => A = \(\frac{3^{64}-1}{2}\)
a) \(A=1+8+8^2+8^3+....+8^7\)
\(\Rightarrow8A=8+8^2+8^3+8^4+....+8^8\)
\(\Rightarrow8A-A=8^8-1\)
\(\Rightarrow A=\frac{8^8-1}{7}\)
Các bạn có thể tính cụ thể ra vì đây là số nhỏ nhưng đối vs những bài số to thì các bạn chỉ cần làm đến đây thôi
Vậy............
b) \(B=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(=\left(3^2+1\right)\left(9^2+1\right)\left(81^2+1\right)\)
\(\Rightarrow\left(3^2-1\right)B=\left(3^2-1\right)\left(3^2+1\right)\left(9^2+1\right)\left(81^2+1\right)\)
\(\Rightarrow8B=\left(9^2-1\right)\left(9^2+1\right)\left(81^2+1\right)\)
\(\Rightarrow8B=\left(81^2-1\right)\left(81^2+1\right)\)
\(\Rightarrow8B=\left(81^4-1\right)\)
\(\Rightarrow B=\frac{81^4-1}{8}\)
Vậy...........