Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: |2x‐13|>=0﴾với mọi x﴿
=>|2x‐13|‐7/4>=‐7/4﴾với mọi x﴿ hay A>=‐7/4
Do đó, GTNN của A là ‐7/4 khi:
2x‐13=0 2x=0+13=13
x=13/2=6,5
Vậy GTNN của A là ‐7/4 khi x=6,5
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
C1: \(A=\left(\frac{36}{6}-\frac{4}{6}+\frac{3}{6}\right)-\left(\frac{150}{30}+\frac{50}{30}-\frac{45}{30}\right)-\left(\frac{18}{6}-\frac{14}{6}+\frac{15}{6}\right)\)
\(=\frac{35}{6}-\frac{155}{30}-\frac{19}{6}=\frac{35}{6}-\frac{31}{6}-\frac{19}{6}=-\frac{15}{6}=-2\frac{1}{2}\)
C2: \(6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
\(=\left(6-5-3\right)-\left(\frac{2}{3}+\frac{5}{3}-\frac{7}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)
\(=-2-0-\frac{1}{2}=-2\frac{1}{2}\)
a) \(A=31-\sqrt{2x+7}\)
Ta có: \(-\sqrt{2x+7}\le0\forall x\)
\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)
Vậy MIN A = 31
Thay \(x=1;y=-1;z=3\) vào biểu thức ta có
\(1\cdot\left(-1\right)\cdot3+\dfrac{2\cdot1^2\cdot\left(-1\right)}{\left(-1\right)^2+1}\)
\(=-3+\dfrac{-2}{2}\\ =-3-1\\ =-4\)
Thay x=1; y=-1; z=3 vào biểu thức ta có:
\(1.\left(-1\right).3+\dfrac{2.1^2}{\left(-1\right)^2}+1\)
\(=-3+\dfrac{2}{1}+1\)
\(=-3+2+1\)
\(=\left(-1\right)+1\)
\(=0\)
Tích mình nha!!!
\(A=31-\sqrt{2x+7}\)
Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)
Với mọi \(x\ge-3,5\) ta có:
\(\sqrt{2x+7}\ge0\)
\(\Rightarrow A=31-\sqrt{2x+7}\le31\)
Dấu "=" xảy ra khi:
\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)
Vậy \(MAX_A=31\) khi \(x=-3,5\)
\(B=-9+\sqrt{7+x}\)
Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:
\(x\ge-7\)
Với mọi \(x\ge-7\) ta có:
\(\sqrt{7+x}\ge0\)
\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:
\(\sqrt{7+x}=0\Rightarrow x=-7\)
\(\Rightarrow MIN_B=-9\) khi \(x=-7\)
a, Sửa đề: Tìm GTLN của biểu thức
Vì \(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)
\(\Rightarrow31-\sqrt{2x+7}\le31\)
Dấu ''='' xảy ra khi :
\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)
Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5
b, Tìm GTNN của B
Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)
Vì \(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)
Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)
Vậy \(B_{Min}=-9\) khi x = -7
p/s: Lần sau gửi đề cẩn thận hơn ||^^
Để P(x)=0 thì 2x-7+x-14=0
=>3x-21=0
hay x=7
Để Q(x)=0 thì (x-8)(x+8)=0
hay \(x\in\left\{8;-8\right\}\)