Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2\times2^2-3\times2-5\right)\left(2^2-3\right)=\left(8-6-5\right)\left(4-3\right)=-3\times1=-3\)
Thay x = 2 vào A, ta có:
\(A=\left(2\times2^2-3\times2-5\right)\left(2^2-3\right)=\left(8-6-5\right)\left(4-3\right)=-3\)
Vậy tại x = 2, giá trị của biểu thức A là -3
\(A=\left(5x^5+5x^4\right):5x^2-\left(2x^4-8x^2-6x+12\right):\left(2x-4\right)\)
Phép chia thứ nhất:
\(\left(5x^5+5x^4\right):5x^2=x^3+x^2\)
Phép chia thứ hai:
2x^4 - 4x^3 - 2x^4 - 8x^2 - 6x + 12 - 4x^3 - 8x^2 4x^3 - 8x^2 - 6x + 12 - -6x + 12 -6x + 12 0 2x - 4 x^3 - 2x^2 - 3
Vậy A = ( x^3 + x^2 ) - ( x^3 + 2x^2 - 3 ) = -x^2 + 3
Với x = -2 thì: A = -(-2)^2 + 3 = -4 + 3 = -1
B) bạn làm tương tự nhé
\(a)\)
\(21\left(x+3\right)^3:\left(3x+9\right)^2\)
\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)
\(=7\left(x+3\right):3\)
Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)
\(b)\)
Thay vào ta được:
\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)
\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)
\(=1^4:\left(1^3.1\right)\)
\(=1:1\)
\(=1\)
\(c)\)
Thay vào ta được:
\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)
\(=-6.10.7\)
\(=-420\)
a, \(P=\left(\frac{x^2+9}{x^2+5x}+\frac{x-1}{x}-\frac{x}{x+5}\right)\left(1+\frac{2}{x}\right)\)đk : x khác 0 ; -5
\(=\left(\frac{x^2+9+x^2+4x-5-x^2}{x\left(x+5\right)}\right)\left(\frac{x+2}{x}\right)\)
\(=\frac{x^2+4x+4}{x\left(x+5\right)}\left(\frac{x+2}{x}\right)=\frac{\left(x+2\right)^3}{x^2\left(x+5\right)}\)
b, Ta có \(\left(x+2\right)\left(3x-2\right)=0\Leftrightarrow x=-2;x=\frac{2}{3}\)
Với x = -2 => P = 0
Với x = 2/3 => \(P=\frac{\left(\frac{2}{3}+2\right)^3}{\frac{4}{9}\left(\frac{2}{3}+5\right)}=\frac{128}{17}\)
-mình nghĩ bạn nên đặt dấu chia giữa 2 đa thức kia thì kq sẽ đẹp hơn
\(A=\left(2\times2^2-3\times2-5\right)\left(2-2^2-3\right)=\left(8-6-5\right)\left(2-4-3\right)=\left(-3\right)\times\left(-5\right)=15\)
Bạn phân ra 2 trường hợp
1) x=2
2) x= -1