Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{1.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{-1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}\)
\(=\frac{16}{35}\)
\(A=\frac{3.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(A=\frac{3}{5}+\frac{1}{7}=\frac{21}{35}+\frac{5}{35}=\frac{26}{35}\)
A = \(-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
A = \(-1\frac{1}{5}.\)4 : \(\frac{4.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
A = \(-1\frac{1}{5}.4\): \(\frac{4}{5}\)= \(\frac{-6}{5}\).4. \(\frac{5}{4}\)
A = \(\frac{-24}{5}.\frac{5}{4}\)=\(\frac{\left(-6\right).1}{1.1}\)= -6.
\(A=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
\(=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
\(=-1\frac{1}{5}.\frac{4}{1}:\frac{4}{5}\)
\(=-1\frac{1}{5}.\frac{4}{1}.\frac{5}{4}\)
\(=-1\)
A = \(\frac{\frac{\frac{5+3.3-1.12}{12}}{3.6-5+2.2}+}{6}+\frac{16\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)}{17\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)}=\frac{\frac{\frac{5+9-12}{12}}{18-5+4}}{6}+\frac{16}{17}=\frac{2}{12}.\frac{6}{17}+\frac{16}{17}=\frac{1}{17}.\frac{6}{17}=1\)
A=\(\frac{\frac{5}{12}+\frac{9}{12}-\frac{12}{12}}{\frac{18}{6}-\frac{5}{6}+\frac{4}{6}}+\frac{16.\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)}{17.\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)}\)
=\(\frac{\frac{1}{6}}{\frac{17}{6}}+\frac{16}{17}\)
=\(\frac{1}{17}+\frac{16}{17}\)
=1
\(B=1\frac{6}{41}.\left(\frac{12+\frac{12}{19}+\frac{12}{37}-\frac{12}{53}}{3+\frac{3}{19}+\frac{3}{37}-\frac{3}{53}}\right):\left(\frac{4+\frac{4}{19}+\frac{4}{37}-\frac{4}{53}}{5+\frac{5}{19}+\frac{5}{37}-\frac{5}{53}}\right).\frac{124242423}{237373735}\)
\(B=1\frac{6}{41}.\left[\frac{12\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{3\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right]:\left[\frac{4\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{5\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right].\frac{124242423}{237373735}\)
\(B=1\frac{6}{41}\left(\frac{12}{3}.\frac{5}{4}\right).\frac{124242423}{237373735}\)
\(B=1\frac{6}{41}.5.\frac{123}{235}\)
\(B=\frac{47.5.123}{41.235}=\frac{47.5.41.3}{41.5.47}=3\)
B=\(1\frac{6}{41}.\left(\frac{12+\frac{12}{19}+\frac{12}{37}-\frac{12}{53}}{3+\frac{3}{19}+\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{19}+\frac{4}{37}-\frac{4}{53}}{5+\frac{5}{19}+\frac{5}{37}-\frac{5}{53}}\right).\frac{124242423}{237373735}\)
B=\(\frac{47}{41}.\left(\frac{12.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{3.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}:\frac{4.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{5.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right).\frac{123.1010101}{235.1010101}\)
B=\(\frac{47}{41}.\left(\frac{12}{3}:\frac{4}{5}\right).\frac{123}{235}=\frac{47}{41}.\left(\frac{12}{3}.\frac{5}{4}\right).\frac{123}{235}\)
B=\(\frac{47}{41}.\frac{15}{3}.\frac{123}{235}=\frac{47.5.3.41.3}{41.3.5.47}=3\)
Vậy B=3
Chúc bn học tốt
13/50+9/100+41/100+12/50
=(13/50+12/50)+(9/100+41/100)
=1/2+1/2
=1
11) Ta có:
\(\frac{120-0,5.40.5.0,2.20.0,25-20}{1+5+9+...+33+37}\)
\(=\frac{120-\left(0,5.40\right).\left(5.0,2\right).\left(20.0,25\right)-20}{1+5+9+...+33+37}\)
\(=\frac{120-20.1.5-20}{1+5+9+...+33+37}\)
\(=\frac{120-100-20}{1+5+9+...+33+37}\)
\(=\frac{0}{1+5+9+...+33+37}=0\)
P/s : Đề của bạn sai nên mik đã sửa lại rồi
Ta có :
\(B=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
\(\Rightarrow B=-\frac{6}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{1\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}:\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
\(\Rightarrow B=-\frac{6}{5}.4:\frac{4}{5}\)
\(\Rightarrow B=-\frac{24}{5}:\frac{4}{5}\)
\(\Rightarrow B=-\frac{24}{5}.\frac{5}{4}\)
\(\Rightarrow B=-6\)
Vậy \(B=-6\)
~ Ủng hộ nhé
Phải là \(B=\frac{0,5-\frac{3}{17}+\frac{3}{37}}{\frac{5}{6}-\frac{5}{7}+\frac{5}{37}}+\frac{0,5-\frac{1}{3}+\frac{1}{4}-0,2}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-3,5}\) chứ nhỉ?
Nếu đúng thì phân tích như sau
\(\Leftrightarrow B=\frac{\frac{3}{6}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{6}-\frac{5}{7}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(B=\frac{3\left(\frac{1}{6}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{6}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(B=\frac{3}{5}+\frac{1}{7}=\frac{16}{35}\)