Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
G = \(\sqrt{6}-2+5-\sqrt{6}+2^3=3+8=11\)
F= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2^5\right)^2}\)=\(2+\sqrt{3}-\sqrt{3}+1+2^5=3+32=35\)
H = \(\sqrt{6}-\frac{4\left(\sqrt{10}+\sqrt{6}\right)}{10-6}+\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\)=\(\sqrt{6}-\sqrt{10}-\sqrt{6}+\sqrt{10}=0;\)
a. ĐK \(x\ge0\)và \(x\ne1\)
A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)
\(=\frac{x+1}{4\sqrt{x}}\)
b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)
c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)
Vậy A >1/2
\(B=\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3+\sqrt{5}}=3-\sqrt{5}\)
\(C=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\)
\(=\frac{-2\sqrt{3}}{2}=-\sqrt{3}\)
\(D=\frac{2}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+2\right)-\left(3-\sqrt{3}\right)\)
\(=\sqrt{3}-1-\sqrt{3}-2-3+\sqrt{3}=\sqrt{3}-6\)
\(A=\left(\sqrt{8}-3\sqrt{2}+10\right)\left(\sqrt{2}-3\sqrt{0.4}\right)=\sqrt{16}-\frac{12\sqrt{5}}{5}+\sqrt{20}-6\sqrt{10}-6+\frac{18\sqrt{5}}{5}\)
\(A=-2+\frac{16\sqrt{5}}{5}-6\sqrt{10}\)
b)\(B=\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{6+2\sqrt{5}}}{2}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{5}+1}{2}-\frac{\sqrt{5}-1}{2}=1\)
a) \(A=\left(1-\sqrt{18}+\sqrt{32}\right).\sqrt{3-2\sqrt{2}}\)
\(=\left(1-\sqrt{9.2}+\sqrt{16.2}\right).\sqrt{2-2\sqrt{2}+1}\)
\(=\left(1-\sqrt{9}.\sqrt{2}+\sqrt{16}.\sqrt{2}\right).\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\left(1-3\sqrt{2}+4\sqrt{2}\right).\left|\sqrt{2}-1\right|\)
\(=\left(1+\sqrt{2}\right).\left|\sqrt{2}-1\right|\)
Vì \(\sqrt{2}>1\)\(\Rightarrow\left|\sqrt{2}-1\right|>0\)
\(\Rightarrow A=\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)=\left(\sqrt{2}\right)^2-1=2-1=1\)
b) \(B=\frac{3}{6+\sqrt{35}}-\frac{3}{6-\sqrt{35}}=\frac{3\left(6-\sqrt{35}\right)}{\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)}-\frac{3\left(6+\sqrt{35}\right)}{\left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right)}\)
\(=\frac{18-3\sqrt{35}-18-3\sqrt{35}}{36-35}=-6\sqrt{35}\)