K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

\(B=x^3-3x^2+3x\)

\(=x^3-3x^21+3x1^2-1^3+1\)

\(=\left(x-1\right)^3+1\)

thay x=11 vào P ta đc:

\(B=\left(11-1\right)^3+1=1001\)

Vậy B=1001

\(A=x^3+3x^2+3x+6\)

\(=x^3+3x^2+3x+1+5\)

\(=\left(x+1\right)^3+5\)

Thay x = 19 vào biểu thức \(A=\left(x+1\right)^3+5\)ta được:

\(A=\left(19+1\right)^3+5=20^3+5=8000+5=8005\)

Vậy giá trị của biểu thức A tại x = 19 là 8005.

\(B=x^3-3x^2+3x\)

\(=x^3-3x^2+3x-1+1\)

\(=\left(x-1\right)^3+1\)

Thay x = 11 vào biểu thức \(B=\left(x-1\right)^3+1\)ta được:

\(B=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)

Vậy giá trị của biểu thức B tại x = 11 là 1001.

15 tháng 8 2020

với x=11

15 tháng 8 2020

Bài làm:

Ta có: Tại x = 11 thì giá trị của B là

\(B=x\left(x^2-3x+3\right)=11\left(11^2-3.11+3\right)\)

\(=11.91=1001\)

21 tháng 6 2016

*A=x3+3.x2.1+3.x.12+13+5=(x+1)3+5 (hằng đẳng thức số 4)

 Tại x=19 giá trị của biểu thức A là

    A=(19+1)3+5=203+5=8000+5=8005

*B=x3-3.x2.1+3.x.1-13+1=(x-1)3+1 (hằng đẳng thức số 5)

 Tại x=11 giá trị của biểu thức B là 

   B=(11-1)3+1=103+1=1000+1=1001

21 tháng 6 2016

A=\(\left(x^3+3x^2+3x+1\right)+5=\left(x+1\right)^3+5\)

với x=19 thì A=\(\left(1+19\right)^3+5=8005\)

B= \(\left(x^3-3x^2+3x-1\right)+1=\left(x-1\right)^3-1\)

với x=11 thì B=\(\left(11-1\right)^3-1\)=999

Bài 2: 

a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)

b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)

22 tháng 7 2023

\(...=A=x^3-3x^2+3x-1+1013\)

\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)

\(...B=x^3-6x^2+12x-8-100\)

\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)

\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)

\(...D=x^3+9x^2+27x+9+2018\)

\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)

22 tháng 7 2023

a) \(A=x^3-3x^2+3x+1012\)

\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)

\(A=\left(x-1\right)^3+1013\)

Thay x=11 vào A ta có:

\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)

b) \(B=x^3-6x^2+12x-108\)

\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)

\(B=\left(x-2\right)^3-100\)

Thay x=12 vào B ta có:

\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)

c) \(C=x^3+6x^2y+12xy^2+8y^3\)

\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)

\(C=\left(x+2y\right)^3\)

Thay x=-2y vào C ta được:

\(C=\left(-2y+2y\right)^3=0^3=0\)

d) \(D=x^3+9x^2+27x+2027\)

\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)

\(D=\left(x+3\right)^3+2000\)

Thay x=-23 vào D ta có:

\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)