Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,�,
220.15+210.85220.15+210.85
=220.210.85+15=220.210.85+15
=230.100=230.100
=230.102=230.102
b,�,
2716:9102716:910
=(33)16:(32)10=(33)16:(32)10
=348:320=348:320
=328=328
c,�,
1253:2541253:254
=(53)5:(52)4=(53)5:(52)4
=515:58=515:58
=57=57
d,�,
244:34−3212:1612244:34−3212:1612
=(24:3)4−(32:16)12=(24:3)4−(32:16)12
=84−212=84−212
=(23)4−212=(23)4−212
=212−212=212−212
\(5^{12}.7-5^{11}.10\)
\(=5^{11}.\left(5.7-10\right)\)
\(=5^{11}.25\)
\(=5^{11}.5^2\)
\(=5^{13}\)
\(2^{20}.15+2^{20}.85\)
\(=2^{20}.5\left(3+17\right)\)
\(=2^{20}.100\)
\(=104857600\)
\(125^3:25^4\)
\(=\left(5^3\right)^3:\left(5^2\right)^4\)
\(=5^9:5^8\)
\(=5\)
\(24^4:3^4-32^{12}:16^{12}\)
\(=\left(24:3\right)^4-\left(32:16\right)^{12}\)
\(=8^4-2^{12}\)
\(=0\)
a. \(12^2.3^2.2^3=2^4.3^2.3^2.2^3=2^7.3^4\)
b. \(8^3.3^2.6^3=2^9.3^2.2^3.3^3=2^{12}.3^5\)
c. \(5^{32}.5^2=5^{34}\)
d. \(100^6.2^3=\left(2^2.5^2\right)^6.2^3=2^8.5^8.2^3=2^{11}.5^8\)
e. \(100^2:10^2:5^2=\left(10.5.2\right)^2:10^2:5^2=2^2\)
f. \(121^3-11^2=11^6-11^2=11^2\left(11^4-1\right)\)
1/ a) \(2.3.12.12.3=2.3.2^2.3.2^2.3.3=2^5.3^4\)
b) \(3.5.27.125=3.5.3^3.5^3=3^4.5^4=\left(3.5\right)^4\)
2/ a) \(\left(27^3\right)^4=27^{3.4}=27^{12}\)
Vậy \(\left(27^3\right)^4=27^{12}\)
b) \(5^{36}=\left(5^6\right)^6\) và \(11^{24}=\left(11^4\right)^6\)
Do đó \(5^6=15625\) và \(11^4=14641\)
Vì 15625>14641 nên\(\left(5^6\right)^6>\left(11^4\right)^6hay5^{36}>11^{24}.\)
3/ a) \(x^3=125=>x=5\)
b) \(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-14\right)^3=1000\)
\(3x-14=10^3\)
\(3x=10^3+14\)
\(3x=1014\)
\(x=\frac{1014}{3}=338\)
c) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(2x-1=3\)
\(2x=3+1\)
\(x=\frac{4}{2}=2\)
d) \(5x+3^4=2^2.7^2\)
\(5x+3^4=\left(2.7\right)^2=14^2\)
\(5x+81=196\)
\(5x=196-81\)
\(5x=115\)
\(x=\frac{115}{5}=23\)
e) \(4^x=1024=>x=5\).