Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm của AB:
\(\Rightarrow MA=MB=\dfrac{AB}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Do SM là ⊥ AB nên ΔSAM vuông tại M áp dụng định lý Py-ta-go ta có:
\(SA^2=SM^2+MA^2\)
\(\Rightarrow13^2=SM^2+5^2\)
\(\Rightarrow SM=\sqrt{13^2-5^2}=12\left(cm\right)\)
Nữa chu vi đáy của hình chóp tứ giác đều:
\(p=\dfrac{4\cdot10}{2}=20\left(cm\right)\)
Diện tích xung quanh của chóp tứ giác đều là:
\(S_{xq}=p\cdot d=20\cdot12=240\left(cm^2\right)\)
Ảnh tham khảo:
Gọi x (cm) là đường cao của mặt bên:
Ta có:
x² = 13² - 5² = 144
x = 12 (cm)
Diện tích xung quanh của hình chóp:
4 . 12 . 10 : 2 = 240 (cm²)
- Mặt bên: \(MAB\), \(MAC\), \(MBC\)
- Mặt đáy: \(ABC\)
- Đường cao: \(MO\)
- Độ dài cạnh bên: \(15\)cm
- Độ dài cạnh đáy: \(10\)cm
Ta có : \(d=SH=\sqrt{SB^2-BH^2}\)
\(=\sqrt{25^2-15^2}=\sqrt{400}=20\left(cm\right)\)
Diện tích xung quanh của hình chóp:
Sxq = pd = \(\dfrac{1}{2}\).30.4.20 = 1200 (cm2)
Diện tích đáy: Sđ = 302 = 900(cm2)
Diện tích toàn phần của hình chóp:
Stp = Sxq + Sđ = 1200 + 900 = 2100(cm2)
Sau khi thực hiện theo hướng dẫn, ta được sản phẩm như Hình 9b.
Thể tích lượng nước còn lại trong hộp bằng hiệu giữa thể tích của hình hộp chữ nhật và thể tích của hình chóp đều. Vậy thể tích lượng còn lại là: 290 (cm3).