K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

cho mi sửa lại:

\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)

9 tháng 3 2021

dấu 8 là nhân còn dấu ^ là mũ ạ

A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 99 - 100 + 101 + 102

A=(1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... (97 + 98 - 99 - 100) + 101 + 102

A=(-4) + (-4) +...+ (-4) + 203 ( có 25 số -4)

A=25.(-4)+203

A=-100+203

A=103

B = 1 + (-3) + 5 + (-7) + …+ 17 + (- 19)  

B=[1 + (-3)] + [5  +(-7)] +...+ [17 + (-19)]          Có 5 cặp số

B=(-2) + (-2) +...+ (-2)             có 5 số hạng

B=(-2).5

B=-10

C = 1 -  4 + 7 - 10 + … - 100 + 103

C = (1 -  4) + (7 - 10) + … +(97- 100) + 103          có 34 cặp số

C=(-3) + (-3) +...+ (-3)  +103           có 34 số -3

C=34.(-3)+103

C=-102+103

C=1

2 tháng 3 2017

A = 103

29 tháng 1 2016

A=1+2‐3‐4+5+6‐7‐8+.........‐99‐100+101+102

=1+﴾2‐3‐4+5﴿+﴾6‐7‐8+9﴿+........+﴾98‐99‐100+101﴿+102

=1+0+0+0+........+0+0+102

=103 

C= ‐3+﴾‐3﴿+...+﴾‐3﴿+313

Có: ﴾307‐1﴿:6+1=52﴾số﴿

C=‐3.52+313

C=157

14 tháng 8 2016

A=1+(-3)+5+(-7)+...17+(-19)

=> A=(1+5+9+13+17)-(3+7+11+15+19)

=>A=45-55

=>A=-10

14 tháng 8 2016

Ta có : 

A=1+(-3)+5+(-7)+...17+(-19)

=> A=(1+5+9+13+17)-(3+7+11+15+19)

=>A=45-55

=>A=-10

Đap số : -10

7 tháng 8 2020

A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)

=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\) 

=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)

16 tháng 1 2016

A =  -  ( 1+2+3 +....+ 202)  = - 203. 101 = -20503

B= ( 1+2-3-4) + ( 5+6-7-8) +..........+( 97+98 -99-100) + ( 101+102)

 = -4                 + (-4)              .........+ (-4)                + 203

= -4 .25 + 203  = 103

18 tháng 1 2016

Vậy mà cũng gọi là trả lời 

26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.