Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(A=7\cdot\frac{3}{35}=\frac{21}{35}\)
\(A=\frac{7}{10\cdot11}+\frac{7}{11\cdot12}+\frac{7}{12\cdot13}+...+\frac{7}{69\cdot70}\)
\(A=7\left(\frac{1}{10\cdot11}+\frac{1}{11\cdot12}+\frac{1}{12\cdot13}+...+\frac{1}{69\cdot70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)=7\cdot\frac{3}{35}=\frac{3}{5}\)
\(B=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\)
\(B=\frac{1}{2}\left(\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+\frac{2}{29\cdot31}+...+\frac{2}{73\cdot75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(C=\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{2008\cdot2010}\)
\(C=\frac{4}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
\(C=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=2\left(\frac{1}{2}-\frac{1}{2010}\right)=2\cdot\frac{502}{1005}=\frac{1004}{1005}\)
1) \(A=\frac{7}{10\times11}+\frac{7}{11\times12}+\frac{7}{12\times13}+...+\frac{7}{69\times70}\)
\(A=7\times\left(\frac{1}{10\times11}+\frac{1}{11\times12}+\frac{1}{12\times13}+...+\frac{1}{69\times70}\right)\)
\(A=7\times\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\times\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(A=7\times\frac{3}{35}\)
\(A=\frac{3}{5}\)
2) \(B=\frac{1}{25\times27}+\frac{1}{27\times29}+\frac{1}{29\times31}+...+\frac{1}{73\times75}\)
\(B=\frac{1}{2}\times\left(\frac{2}{25\times27}+\frac{2}{27\times29}+\frac{2}{29\times31}+...+\frac{2}{73\times75}\right)\).
\(B=\frac{1}{2}\times\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\times\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\times\frac{2}{75}\)
\(B=\frac{1}{75}\)
3) \(C=\frac{4}{2\times4}+\frac{4}{4\times6}+\frac{4}{6\times8}+...+\frac{4}{2008\times2010}\)
\(C=\frac{4}{2}\times\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{2008\times2010}\right)\)
\(C=2\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=2\times\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(C=2\times\frac{502}{1005}\)
\(C=\frac{1004}{1005}\)
_Chúc bạn học tốt_
\(A=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(A=\frac{1}{3}-\frac{1}{111}\)
\(A=\frac{12}{37}\)
mà dài quá bạn ơi ban tách ra thành nhiều câu hỏi đi thế này trả lời lâu lắm
A=(2+3+...+13)-(1+2+...+12)=2+3+...+13-1-2-...-12=(13-1)+(2-2)+(3-3)+...+(12-12)=12
13 - 12 + 11 + 10 - 9 + 8 - 7 - 6 + 5 - 4 + 3 + 2 - 1
= 1 + 11 - 1 + 1 + 11 - 7 + 1
= 12 - 1 + 1 + 11 - 7 + 1
= 11 + 1 + 11 - 7 + 1
= 12 + 11 - 7 + 1
= 23 - 7 + 1
= 16 + 1
=17