Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
~ Học tốt ~
Bài 1:
1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)
\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)
\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)
\(=3^2=9\)
2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)
\(=2^7:2^3:\dfrac{1}{2^4}\)
\(=2^4.2^4=256\)
3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)
\(=\dfrac{43}{48}\)
4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)
\(=-3-1+\dfrac{1}{8}\)
\(=-4+\dfrac{1}{8}\\ \)
\(=-\dfrac{31}{8}\)
5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)
Chúc bạn học tốt
\(\frac{3^6.45^4-15^{13}.5^{-9}}{27^4.25^3+45^6}\)=\(\frac{3^6.3^8.5^4-5^{13}.3^{13}.5^{-9}}{3^{12}.5^6+3^{12}.5^6}\)=\(\frac{3^{14}.5^4-5^4.3^{13}}{3^{12}.5^6+3^{12}.5^6}\)=\(\frac{3.1.}{1.5^2.}\)=\(\frac{3}{25}\)
Học tốt
\(A=\dfrac{\left(\dfrac{2}{5}\right)^7.5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7.5^2+512}\\ A=\dfrac{128+1728}{153+512}\\ A=\dfrac{1856}{665}=2\dfrac{526}{665}\)
Chúc bạn học tốt!!!
\(\dfrac{\left(\dfrac{2}{5}\right)^7\cdot5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7+5^2+512}\)
Bài 1:
\(\dfrac{\left(\dfrac{2}{5}\right)^7\cdot5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7\cdot5^2+512}\)
\(=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}:\dfrac{3}{16}\right)^3}{2^7\cdot5^2+512}\)
\(=\dfrac{2^7+12^3}{2^7\cdot5^2+512}\)
\(=\dfrac{1856}{3712}\)
\(=0,5\)
Bài 2:
\(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Rightarrow5x+1=\dfrac{6}{7}\)
\(\Rightarrow5x=\dfrac{-1}{7}\)
\(\Rightarrow x=\dfrac{-1}{35}\)
\(A=\dfrac{\left(\dfrac{2}{5}\right)^7.5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7.5^2+512}\)
\(A=\dfrac{128+1728}{153+512}\)
\(A=\dfrac{1856}{665}\)
\(A=2\dfrac{526}{665}\)
15: Tính
a) Ta có: \(\frac{3^6\cdot45^4-15^{13}\cdot5^{-9}}{27^4\cdot25^3+45^6}\)
\(=\frac{3^6\cdot3^4\cdot15^4-15^{13}\cdot\frac{1}{5^9}}{9^4\cdot3^4\cdot5^6+9^6\cdot5^6}\)
\(=\frac{3^6\cdot45^4-\frac{5^{13}\cdot3^{13}}{5^9}}{9^4\cdot5^6\left(3^4+9^2\right)}\)
\(=\frac{45^4\cdot3^6-5^4\cdot3^{13}}{45^4\cdot5^2\cdot2\cdot9^2}\)
\(=\frac{5^4\cdot3^6\left(9^4-3^7\right)}{5^2\cdot3^4\cdot45^4\cdot2}\)
\(=\frac{5^2\cdot3^2\cdot\left(3^8-3^7\right)}{45^4\cdot2}\)
\(=\frac{5^2\cdot3^9\cdot\left(3-1\right)}{5^4\cdot3^8\cdot2}\)
\(=\frac{1}{5^2}\cdot3\)
\(=\frac{3}{25}\)
a: \(A=\dfrac{3^6\cdot3^8\cdot5^4-3^{13}\cdot5^{13}\cdot5^{-9}}{3^{12}\cdot5^6+5^6\cdot3^{12}}\)
\(=\dfrac{3^{14}\cdot5^4-3^{13}\cdot5^4}{2\cdot3^{12}\cdot5^6}\)
\(=\dfrac{3^{13}\cdot5^4\cdot\left(3-1\right)}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
c: \(C=\dfrac{\dfrac{27}{64}+\dfrac{125}{64}-5\cdot\dfrac{16-15}{12}}{\dfrac{25}{64}+\dfrac{4}{9}-\dfrac{5}{6}}\)
\(=\dfrac{47}{24}:\dfrac{1}{576}=47\cdot24=1128\)
Ta có:
\(\dfrac{\left(\dfrac{2}{5}\right)^7.5^7+\left(\dfrac{9}{4}\right)^3\div\left(\dfrac{3}{16}\right)^3}{2^7.5^7+512}\)
=\(\dfrac{\left(\dfrac{2}{5}.5\right)^7+\left(\dfrac{9.16}{4.3}\right)^3}{2^7.5^7+2^9}\)=\(\dfrac{2^7+12^3}{2^7.5^7+2^9}\)=\(\dfrac{2^7+2^6.3^3}{2^7.5^7+2^9}\)
=\(\dfrac{2^6.\left(2+3^3\right)}{2^6.\left(2.5^7+2^3\right)}\)=\(\dfrac{29}{156258}\).
Hì hì sai ko bít nha
2a) \(\frac{3^6+45^4-15^3.4^5}{27^4.25^3+45^6}\)
= \(\frac{3^6+\left(3^2.5\right)^4-\left(3.5\right)^3.\left(2^2\right)^5}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}\)
= \(\frac{3^6+3^8.5^4-3^3.5^3.4^{10}}{3^{12}.5^6-3^{12}.5^6}=\frac{3^3.\left(3^3+3^5.5^4-5^3.4^{10}\right)}{0}\)(xem lại đề)
b) \(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{16}{3}\right)^3:\left(\frac{4}{9}\right)^3}{2^7.5^2+512}\)
= \(\frac{\left(\frac{2}{5}.5\right)^7+\left(\frac{16}{3}:\frac{4}{9}\right)^3}{2^7.5^2+2^9}\)
= \(\frac{2^7+12^3}{2^7\left(5^2+2^2\right)}\)
= \(\frac{2^7+\left(2^2.3\right)^3}{2^7.29}\)
= \(\frac{2^7+2^6.3^3}{2^7.29}\)
= \(\frac{2^6\left(1+27\right)}{2^7.29}=\frac{28}{2.29}=\frac{14}{29}\)
\(a,=\dfrac{3^6\cdot5^4\cdot9^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+9^6\cdot5^6}=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}\\ =\dfrac{3^{13}\cdot5^4\cdot2}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
\(b,=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}\cdot\dfrac{16}{3}\right)^3}{2^7\cdot5^2+2^9}=\dfrac{2^7+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{2^7+4^3\cdot3^3}{2^7\cdot29}=\dfrac{2^6\left(2+3^3\right)}{2^7\cdot29}=\dfrac{1}{2}\)