Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{2003\cdot2002}-\frac{1}{2002\cdot2001}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
\(A=-\left(\frac{1}{2003\cdot2002}+\frac{1}{2002\cdot2001}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)
\(A=-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2001\cdot2002}+\frac{1}{2002\cdot2003}\right)\)
\(A=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2003}\right)\)
\(A=-\left(1-\frac{1}{2003}\right)\)
\(A=-\frac{2002}{2003}\)
\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2001.2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)
\(=-\left(1-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)
\(=-1+\frac{1}{2002}.+\frac{1}{2002}.\frac{1}{2003}\)
\(=-1+\frac{1}{2002}\left(1+\frac{1}{2003}\right)\)
\(=-1+\frac{1}{2002}.\frac{2004}{2003}\)
\(=-1+\frac{2}{2003}\)
\(=\frac{-2003+2}{2003}\)
\(=\frac{-2001}{2003}\)
\(-\frac{1}{2003\cdot2002}-\frac{1}{2002\cdot2001}-\frac{1}{2001\cdot2000}-...-\frac{1}{2\cdot1}\)
\(=-1\left(\frac{1}{1\cdot2}+...+\frac{1}{2000\cdot2001}+\frac{1}{2001\cdot2002}+\frac{1}{2002\cdot2003}\right)\)
\(=-1\left(\frac{1}{1}-\frac{1}{2}+...+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2003}\right)\)
\(=-1\left(1-\frac{1}{2003}\right)\)
\(=-1\left(\frac{2003}{2003}-\frac{1}{2003}\right)\)
\(=-1\cdot\frac{2002}{2003}\)
\(=-\frac{2002}{2003}\)
\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{2.1}\)
\(=\frac{1}{2003.2002}-\left(\frac{1}{2002.2001}+\frac{1}{2001.2000}+...+\frac{1}{2.1}\right)\)
\(=\frac{1}{2003.2002}-\left(\frac{1}{2002}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2000}+...+\frac{1}{2}-1\right)\)
\(=\frac{1}{2003.2002}-\left(\frac{1}{2002}-1\right)\)
\(=\frac{1}{2003.2002}-\left(\frac{1}{2002}-\frac{2002}{2002}\right)\)
\(=\frac{1}{2003.2002}-\frac{-2001}{2002}\)
\(=\frac{1}{2003}-\frac{1}{2002}+\frac{2001}{2002}\)
\(=\frac{1}{2003}+\frac{2000}{2002}\)
\(=\frac{1}{2003}+\frac{1000}{1001}\)
Ko chắc ạ! Bạn nào rãnh thì check hoặc nhận xét hộ!
a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(A=1-\frac{1}{99}\)
\(A=\frac{98}{99}\)
thay A vào, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)
đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(A=2.\left(1-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
Thay A vào, ta được :
\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)
\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-\frac{1}{2001.2000}-....-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{2003.2002}+\frac{1}{2002.2001}+\frac{1}{2001.2000}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{2003}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2001}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{2003}-1\right)=-\left(-\frac{2002}{2003}\right)=\frac{2002}{2003}\)
Vậy ....