K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

Cho tam giác ABC vuông tại A, AB<AC. Trung tuyến AM, ˆACB=x,ˆAMB=yACB^=x,AMB^=yChứng minh (sin x +cos x)2=1+sin y

MÌNH CẦN GẤP MỌI NGƯỜI GIÚP MÌNH NHA

4 tháng 9 2018

Cho tam giác ABC vuông tại A, AB<AC. Trung tuyến AM, ˆACB=x,ˆAMB=yACB^=x,AMB^=yChứng minh (sin x +cos x)2=1+sin y

MÌNH CẦN GẤP MỌI NGƯỜI GIÚP MÌNH NHA

4 tháng 9 2018

Quy đồng lên ta được:

A=\(\sqrt{1+4X}\) - \(\sqrt{1-4X}\)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

23 tháng 7 2018

\(ĐKXĐ:x>\dfrac{1}{4}\)

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{x}{\sqrt{4x-1}}+\dfrac{\sqrt{4x-1}}{x}\ge2\sqrt{\dfrac{x}{\sqrt{4x-1}}.\dfrac{\sqrt{4x-1}}{x}}=2\)

\("="\Leftrightarrow\dfrac{x}{\sqrt{4x-1}}=\dfrac{\sqrt{4x-1}}{x}\Leftrightarrow x^2=4x-1\)

\(\Leftrightarrow x^2-4x+4-3=0\Leftrightarrow\left(x-2\right)^2-3=0\)

\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\left(KTM\right)\\x=2+\sqrt{3}\left(TM\right)\end{matrix}\right.\)

KL.....

23 tháng 7 2018

\(\dfrac{x}{\sqrt{4x-1}}+\dfrac{\sqrt{4x-1}}{x}=2\Leftrightarrow\dfrac{x^2+4x-1}{x\sqrt{4x-1}}=2\)

12 tháng 9 2017

\(A=\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\)

\(A^2=\left(\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\right)^2\)

\(A^2=2x-\sqrt{4x-1}+2x+\sqrt{4x-1}-2\sqrt{\left(2x-\sqrt{4x-1}\right)\left(2x+\sqrt{4x-1}\right)}\)

\(A^2=4x-2\sqrt{4x^2-4x+1}\)

\(A^2=4x-2\sqrt{\left(2x-1\right)^2}\)

\(A^2=4x-2\left|2x-1\right|\)

\(A^2=4x-2\left(1-2x\right)\) (vì\(\dfrac{1}{4}\le x\le\dfrac{1}{2}\)

\(A^2=8x-2\)

\(A=\sqrt{8x-2}\)

10 tháng 7 2018

\(\sqrt{4x-2\sqrt{4x-1}}+\sqrt{4x+2\sqrt{4x-1}}\)(với \(x\ge\dfrac{1}{4}\))

\(=\sqrt{\left(\sqrt{4x-1}-1\right)^2}+\sqrt{\left(\sqrt{4x-1}+1\right)^2}\)

\(=\left(\sqrt{4x-1}-1\right)+\left(\sqrt{4x-1}+1\right)\)

\(=2\sqrt{4x-1}\) (với \(x\ge\dfrac{1}{4}\))

2 tháng 6 2017

ta có x=1 , thế vào f(x)

2 tháng 6 2017

x=1/2