K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

a)

A= (-m+n-p)-(-m-n-p)

A= -m+n-p+m+n+p

A= (-m+m) +(n+n) + (-p+p)

A= 0+2n+0

A = 2n

23 tháng 2 2020

Bài 1: 

A = (-m + n - p) - (-m - n - p)

A = -m + n - p + m + n + p

A = (-m + m) + (n + n) - (p - p)

A = 2n

Với n = -1 => A = 2(-1) = -2

Bài 2: 

A = (-2a + 3b - 4c) - (-2a -3b - 4c)

A = -2a + 3b - 4c + 2a + 3b + 4c

A = (-2a + 2a) + (3b + 3b) - (4c - 4c)

A = 6b

Với b = -1 => A = 6(-1) = -6

Bài 3:

a) A = (a + b) - (a - b) + (a - c) - (a + c)

A= a + b - a + b + a - c - a - c

A = (a - a + a - a) + (b + b) - (c + c)

A = 2(b - c)

b) B = (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)

B = a + b - c + a - b + c - b - c + a - a + b + c

B = (a + a + a - a) + (b - b - b + b) - (c - c + c - c)

B = 2a

4 tháng 1 2018

Bài 3 : Cho a . b , tính |S| biết : S=-(-a-b-c) + (-c+b+a) - (a+b)

Đề sai ,ko bao giờ đề cho a.b vì chỉ có cộng trừ thôi .Nên đề phải là a>b

Ta có: S=-(-a-b-c) + (-c+b+a) - (a+b)

S= -a+b+c-c+b+a-a-b

S= (-a+a-a)+(b+b-b)+(c-c)

S=-a+b+0

S=b-a

Mà \(a>b\Rightarrow b-a< 0\)

\(\Leftrightarrow\left|S\right|=\left|b-a\right|=a-b\)

Vậy |S|=|b-a|=a-b

4 tháng 1 2018

pn nào trả lời cả 4 ms dc nha

\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)

\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)

\(S=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)

\(S=\frac{bc+b+1}{bc+b+1}=1\)

19 tháng 1 2019

1 nha bn

27 tháng 3 2015

A= \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{35}+\frac{1}{99}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.6}+...+\frac{2}{9.11}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)

\(2A=1-\frac{1}{11}=\frac{10}{11}\)

\(A=\frac{10}{11}:2=\frac{5}{11}\)

27 tháng 3 2015

\(D=\frac{3^2}{1.4}+\frac{3^2}{4.7}+...+\frac{3^2}{13.16}\)

\(D=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{13.16}\right)\)

\(D=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)

\(D=3.\left(1-\frac{1}{16}\right)=3.\frac{15}{16}=2\frac{13}{16}\)