Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot3\cdot13}=\frac{2^{10}\left(13+65\right)}{2^8\cdot3\cdot13}=\frac{2\cdot78}{3\cdot13}=\frac{2\cdot2\cdot3\cdot13}{3\cdot13}=4\)
d) \(\frac{3^{43}+3^4}{3^{39}+3^0}=\frac{3^4\left(3^{39}+1\right)}{3^{39}+1}=3^4=81\)
e) \(\frac{3^{13}\cdot99-15\cdot3^{14}}{3^{15}}=\frac{3^{13}\left(99-15\cdot3\right)}{3^{15}}=\frac{99-45}{3^2}=\frac{54}{3^2}=\frac{2\cdot3^3}{3^2}=\frac{2}{3}\)
f) \(\frac{\left(3\cdot4\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot4^1-16^9}=\frac{3^2\cdot4^2\cdot2^{32}}{11\cdot2^{13}\cdot4-4^{18}}=\frac{3^2\cdot4^2\cdot2^{32}}{4\left(11\cdot2^{13}-2^{34}\right)}=\frac{3^2\cdot2^{34}}{2^{13}\left(11-2^{21}\right)}=\frac{3^2\cdot2^{21}}{11-2^{21}}\)
c) \(\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot3\cdot13}\)
\(=\frac{2^{10}\left(13+65\right)}{2^8\cdot3\cdot13}\)(có chung 2^10 nên đặt ra ngoài)
\(=\frac{2^8\cdot2^2\cdot78}{2^8\cdot3\cdot13}\) (vì 2^10 = 2^8 * 2^2. còn 78 là tổng của 2 số hạng trong ngoặc)
\(=\frac{2^2\cdot78}{3\cdot13}\)(chỗ này đoạn trên nhầm, phải là 2^2 mới đúng. Trên, dưới cùng có 2^8 và là phép nhân nên triệt tiêu)
\(=\frac{2^2\cdot3\cdot13}{3\cdot13}\) (phân tích 78 ra thừa số nguyên tố ta được 3*13 )
\(=4\) (tử và mẫu cùng có 3*13 và là phép tình nhân nên đc triệt tiêu. Còn lại 2^2 . mà 2^2 =4 nên kq là 4)
Chú ý: trong bài làm ko ghi lại phần trong ngoặc
\(A=\dfrac{3^6\cdot3^8\cdot5^4-5^{13-9}\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}\)
\(=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6\cdot2}\)
\(=\dfrac{3^{13}\cdot5^4\cdot2}{3^{12}\cdot5^6\cdot2}=\dfrac{3}{25}\)
\(B=\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}:\dfrac{3}{16}\right)^3=1+12^3=1729\)
c: \(=\dfrac{7}{23}\cdot\dfrac{-24-45}{18}=\dfrac{7}{23}\cdot\dfrac{-69}{18}=\dfrac{7}{18}\cdot\left(-3\right)=-\dfrac{7}{6}\)
d: \(=\dfrac{7}{5}\left(23+\dfrac{1}{4}-13-\dfrac{1}{4}\right)=\dfrac{7}{5}\cdot10=14\)
e: \(=\dfrac{2^5\cdot3^3\cdot5^3}{2^3\cdot3^3\cdot2^2\cdot5^2}=5\)
i: \(=\dfrac{1}{3^{10}}\cdot3^{50}-\dfrac{2^{10}}{3^{10}}:\dfrac{4^5}{9^5}=3^{40}-1\)
c: \(=\dfrac{7}{23}\cdot\left(\dfrac{-4}{3}-\dfrac{5}{2}\right)=\dfrac{7}{23}\cdot\dfrac{-8-15}{6}\)
\(=\dfrac{7}{23}\cdot\dfrac{-23}{6}=-\dfrac{7}{6}\)
d: \(=\dfrac{5}{7}\left(23+\dfrac{1}{4}-13-\dfrac{1}{4}\right)=\dfrac{5}{7}\cdot10=\dfrac{50}{7}\)
e: \(=\dfrac{2^5\cdot3^3\cdot5^3}{2^3\cdot3^3\cdot2^2\cdot5^2}=5\)
i: \(=\dfrac{1}{3^{10}}\cdot3^{50}-\dfrac{2^{10}}{3^{10}}:\dfrac{4^5}{3^{10}}\)
\(=3^{40}-1\)
a) \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
b) \(\frac{9^2.2^{11}}{16^2.6^3}=\frac{\left(3^2\right)^2.2^{11}}{\left(2^4\right)^2.\left(2.3\right)^3}=\frac{3^4.2^{11}}{2^8.2^3.3^3}=3\)
c) \(\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}=\frac{2^{10}.3^6.\left(3^{25}+2^{30}\right)}{2^{11}.3^6.\left(3^{25}+2^{30}\right)}=\frac{1}{2}\)
d) \(a.\left(-b\right).\left(-a\right)^2\left(-b\right)^3.\left(-a\right)^3.\left(-b\right)^4=-a^6b^8\)