Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9
các câu 2;3 còn lại giống câu 1 bạn nhé
bạn thay số vào rồi làm tương tự
mk làm phần a thui nhé
a. A = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6
A = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
A = 1/2 - 1/6
A= 3/6 - 1/6
A = 1/3
\(B=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\)
\(b=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(b=\frac{1}{2}-\frac{1}{14}\)
\(b=\frac{3}{7}\)
\(d=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(d=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(d=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(d=1-\frac{1}{11}\)
\(d=\frac{10}{11}\)
\(e=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(e=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+\frac{1}{17\cdot20}\)
\(e=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{17\cdot20}\right)\)
\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(e=\frac{1}{3}\cdot\frac{9}{20}=\frac{3}{20}\)
a)A=\(\frac{\left(8+100\right).\left[\left(100-8\right):4+1\right]}{2}=\frac{108.242}{2}=13068\)
b) \(5B=5^2+5^3+...+5^{101}\)
\(5B-B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100 A=99/100 B= (1/5.6+1/6/7+...+1/101.102).3 B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3 B=(1/5-1/102).3 B=97/170
1) Tính
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Câu 1:
a) \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
b) \(B=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
\(A=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+..........+\frac{1}{8}.\frac{1}{9}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{8.9}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.......+\frac{1}{8}-\frac{1}{9}=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+....+\frac{1}{110}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{10.11}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-.....+\frac{1}{10}-\frac{1}{11}=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)
\(\text{c,d cơ bản tự làm nha }\)
A=>1.1/2.3+1.1/3.4+1.1/4.5+1.1/5.6+1.11/6.7+.1/7.8+1.1/8.9
=>1/2.3+1/3.4+1/4.5+1/6.7+1/7.8+1/8.9
=>1/2-1/3-1/4-1/5-1/6-1/7-1/8-1/9
=>1/2-1/9=>9/18-2/18=>7/18
Vậy A= 7/18
A=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}\)
\(A=\frac{7}{8}\)
B=3/12+3/20+3/30+3/42+3/56+3/72+3/90+3/110+3/132
\(B=\frac{3}{3.4}+\frac{3}{4.5}+....+\frac{3}{11.12}\)
\(B=3\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\right)\)
\(B=3\left(\frac{1}{3}-\frac{1}{12}\right)\)
\(B=3\times\frac{1}{4}\)
\(B=\frac{3}{4}\)
tự làm tiếp nhé tui ngủ đây