K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Lần sau viết cái đề rõ rõ ra nhs!!!

a) \(A=2+2^2+2^3+................+2^{100}\)

\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)

\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)

\(\Rightarrow A=2^{101}-2\)

b) \(B=1+3+3^2+..................+3^{2009}\)

\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)

\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)

\(\Rightarrow2B=3^{2010}-1\)

\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)

c) \(C=4+4^2+4^3+................+4^n\)

\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)

\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)

\(\Rightarrow3C=4^{n+1}-4\)

\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)

26 tháng 5 2017

thanks

19 tháng 10 2017

a) 740:(x+10)=102-2x13

=>740:(x+10)=100-2x13

=>740:(x+10)=1274

=>x=10,5808477237048(6)
6 là chu kì (có nghĩa là 6soos 6 kéo dài mãi mãi không giới hạn)
 

26 tháng 1 2020

S= 2-1-2-3-4-....-201-202 

  = 2-(1+2+3+4+....+202)

=2- (202:2)( 202+1)

= 2- 101.203

2 tháng 2 2017

\(a,-12.\left(x-5\right)+7.\left(-x+3\right)=5\)

                  \(-12x+60-7x+21=5\)

                                        \(-19x+81=5\)

                                                   \(-19x=5-81\)

                                                   \(-19x=-76\)

                                                            \(x=4\)

\(b,30.\left(x+2\right)-6.\left(x-5\right)-24.x=100\)

             \(30x+60-6x+30-24x=100\)

                                                  \(0x+90=100\)

                                                             \(0x=100-90\)

                                                             \(0x=10\)

=> ko có giá trị nào thõa mãn x 

2 tháng 2 2017

cong chua xinh xan oi,cam on nhieu nha

22 tháng 3 2023

\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{3}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)