Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2+\left(-3\right)+4+\left(-5\right)+...+2010+\left(-2011\right)\) ( có 2010 số hạng)
\(S=\left[2+\left(-3\right)\right]+\left[4+\left(-5\right)\right]+...+\left[2010+\left(-2011\right)\right]\)(có 1005 nhóm)
\(S=-1+\left(-1\right)+...+\left(-1\right)\)(có 1005 số -1)
\(S=-1.1005\)
\(S=-1005\)
Bạn gộp tổng các số nguyên âm lại rồi cộng tất cả với các số nguyên dương còn lại.
Mong bạn k cho mình !!!
Vì đề con viết thiếu nên cô đã sửa nhé.
Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)
\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)
\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)
\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)
\(\Rightarrow3S=1+2^{2018}-2^{2019}\)
\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)
-1 +2 - 3 + 4 - 5 + 6 + ........ + 2010 - 2011
= -1 + -1 + -1 + -1 + ......... + - 1
= [ ( - 1 ) - ( -1 ) ] + 1
= 0+1
=1
Chúc bạn học tốt nha
\(S=1\cdot2+2\cdot3+3\cdot4+...+2011\cdot2012\)
\(\Rightarrow3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+2011\cdot2012\cdot3\)
\(\Rightarrow3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+2011\cdot2012\cdot\left(2013-2010\right)\)
\(\Rightarrow3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+2011\cdot2012\cdot2013-2010\cdot20112012\)
\(\Rightarrow3S=2011\cdot2012\cdot2013\)
\(\Rightarrow S=\frac{2011\cdot2012\cdot2013}{3}\)
a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
=2.5
=10
Ta có: C = 2 + 22 + 23 + ..... + 22011 + 22012
=> C = (2 + 22) + (23 + 24) + ..... + ( 22011 + 22012 )
=> C = 2.(1 + 2) + 23.(1 + 2) + ........ + 22011.(1 + 2)
=> C = 2.3 + 23.3 + ..... + 211.3
=> C = 3.(2 + 23 + ..... + 211) chia hết cho 3
\(A=1+2+3+4......+2^{2010}\)
\(B=2^{2011-1}\)
\(B=2^{2011-1}=2.2.2.2......2=2^{2010}\)
\(=>A=1+2+3.....+2^{2010}>B=2^{2010}\)
Ta có : S = 1 - 2 + 22 - 23 + .... - 22009 + 22010
=> 2S = 2 - 22 + 23 - 24 + .... - 22010 + 22011
Lấy 2S trừ S theo vế ta có :
2S + S = (2 - 22 + 23 - 24 + .... - 22010 + 22011) + (1 - 2 + 22 - 23 + .... - 22009 + 22010)
3S = 22011 + 1
Khi đó 3S - 22011 = 22011 + 1 - 22011 = 1
ccđmvvh