Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
=) \(\frac{-1}{12}< x< \frac{1}{8}\)
Vì \(\frac{-1}{12}< 0;\frac{1}{8}>0\)và \(< 1\)
mà x là số nguyên =) \(x=0\)
b) \(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
=) \(\frac{-1}{12}\le\frac{x}{12}< \frac{7}{12}\)
=) \(-1\le x< 7\)=) \(x=\left\{-1;0;1;2...;6\right\}\)
1a) (x-2)(x+1)= 0
Suy ra \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)Suy ra \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
1) Ta có: x thuộc Z => 3+x thuộc Z => |3+x| thuộc N
Mà -3<|3+x|<3
Tức là : 0<|3+x|<3
- |3+x|=1 => 3+x= \(\pm1\orbr{\begin{cases}\Rightarrow3+x=1\Rightarrow x=-2\\\Rightarrow3+x=-1\Rightarrow x=-4\end{cases}}\)
- |3+x|=2 => 3+x= \(\pm2\orbr{\begin{cases}\Rightarrow3+x=2\Rightarrow-1\\\Rightarrow3+x=-2\Rightarrow-5\end{cases}}\)
Vậy x thuộc {-2;-4;-2;-5} thì -3<|3+x|<3
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
1.a)-4<x<3
=> x={-3;-2;-1;0;1;2}
b)-5<x<5
=>x={-4;-3;-2;-1;0;1;2;3;4}
2.a)1+(-3)+5+(-7)+9+(-11)
=(1+5+9)+[(-3)+(-7)+(-11)]
=15+(-21)
=-6
b)(-2)+4+(-6)+8+(-10)+12
=[(-2)+(-6)+(-10)]+(4+8+12)
=(-18)+24
=6
tick cho mk nha bạn