Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}-\left(3^2\right)^{15}}{2^2.\left(3^{14}\right)^2}=\frac{11.3^{29}-3^{30}}{4.3^{28}}\) \(=\frac{3^{29}.\left(11-3\right)}{4.3^{28}}=\frac{3.8}{4}=3.2=6\)
2.
\(\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot15\cdot37\right)\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot5\cdot3\cdot37\right)\\=\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left[65\cdot111-\left(13\cdot5\right)\cdot\left(3\cdot37\right)\right]\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left[65\cdot111-65\cdot111\right]\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot0\\ =0\)
\(\frac{11.3^{25}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{32}-\left(3^2\right)^{15}}{2^2.\left(3^{14}\right)^2}=\frac{11.3^{32}-3^{30}}{4.3^{28}}=\frac{3^{30}.\left(11.3^2-1\right)}{4.3^{28}}=\frac{3^2.98}{4}=\frac{9.98}{4}=\frac{882}{4}=\frac{441}{2}\)