K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

\(\dfrac{x}{x^2+2xy+y^2}+\dfrac{2y}{x+y}+\dfrac{y}{x^2+2xy+y^2}\)

\(=\dfrac{x+y}{\left(x+y\right)^2}+\dfrac{2y}{x+y}\)

\(=\dfrac{1}{x+y}+\dfrac{2y}{x+y}=\dfrac{2y+1}{x+y}\)

27 tháng 8 2016

kinh nhờ học nhà thầy Khánh à ?

27 tháng 8 2016

mấy bạn biết thầy Khánh ak thầy mk đó

3 tháng 7 2018

vt đề tử tế giùm -_-

nhìn dell hỉu giề :)

3 tháng 7 2018

bn ơi cs fải đề thế này ko?

\(2xy\left(x^2y-\frac{1}{2}xy\right)-2x^2y\left(xy-\frac{1}{2}y\right)+1\)

\(=\) \(2x^3y^2-x^2y^2-2x^3y^2+x^2y^2+1\)

\(=1\)

Vậy giá trị của biểu thức trên ko phụ thuộc vào biến nên giá trị của biểu thức luôn bằng 1

11 tháng 12 2018

a)\(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}\)

\(\frac{-5}{2\left(2+y\right)}+\frac{y-2}{y\left(2+y\right)}\)

\(\frac{-5y}{2y\left(2+y\right)}+\frac{2y-4}{2y\left(2+y\right)}\)

\(\frac{-5y+2y-4}{2y\left(2+y\right)}\)

\(\frac{-3y-4}{2y\left(2+y\right)}\)

11 tháng 12 2018

b)\(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}\)

\(\frac{x-1}{x\left(x-2y\right)}+\frac{3}{x\left(2y-x\right)}\)

\(\frac{x-1}{x\left(x-2y\right)}+\frac{-3}{x\left(x-2y\right)}\)

\(\frac{x-1-3}{x\left(x-2y\right)}\)

\(\frac{x-4}{x\left(x-2\right)}\)

5 tháng 10 2019

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

5 tháng 10 2019

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm