Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(\Rightarrow\text{Đ}PCM\)
1.3.5.7........99 = \(\frac{\left(1.3.5.7......99\right)\left(2.4.6......100\right)}{2.4.6......100}\)= \(\frac{1.2.3......99.100}{2^{50}\left(1.2.3.....50\right)}=\frac{51.52.53.......100}{2.2.2......2}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\)(ĐPCM)
50 số 2
Đặt \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow A-\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=0\)
\(\Rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=0\)