Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2+y^2-12x+8y+28\)
\(=\left(4x^2-12x+9\right)+\left(y^2+8y+16\right)+3\)
\(=\left[\left(2x\right)^2+2.2x.3+3^2\right]+\left(y^2+2.y.4+4^2\right)+3\)
\(=\left(2x+3\right)^2+\left(y+4\right)^2+3\)
Ta có :
\(\left(2x+3\right)^2\ge0\forall x\)
\(\left(y+4\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+3\right)^2+\left(y+4\right)^2+3\ge3\forall x\)
Dấu = xảy ra khi
\(\left\{{}\begin{matrix}\left(2x+3\right)^2=0\\\left(y+4\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x+3=0\\y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-4\end{matrix}\right.\)
Vậy \(Min_A=3\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=-4\end{matrix}\right.\)
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
a=[(2x)^2+2.2x.3+3^2]+(y^2-2y+1)+2014
=(2x+3)^2+(y-1)^2+2014
ta thấy
2x+3)^2>=0 voi moi x
(y-1)^2>=0 voi moi y
=>(2x+3)^2+(y-1)^2+2014>=2014
a>=2014 dấu = xay ra khi;
2x+3)^2=0 va (y-1)^2=0
=>x=-3/2:y=1
\(4x^2+12x+y^2-2y+2024\)
\(=\left(4x^2+12x+9\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(2x+3\right)^2+\left(y-1\right)^2+2014\)
Dấu "=" xảy ra <=> x = -3/2; y = 1
Vậy...
\(4x^2+12x+y^2-2y+2024\)
\(=\left(4x^2+12x+9\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(2x+3\right)^2+\left(y-1\right)^2+2014\)
Dấu "=" xảy ra <=> x = -3/2; y = 1
Vậy...
C = 2x2 + 2y2 + 26 + 12x - 8y
C = (2x2 + 12x + 18) + (2y2 - 8y + 8)
C = 2(x2 + 6x + 9) + 2(y2 - 4y + 4)
C = 2(x + 3)2 + 2(y - 2)2 \(\ge\)0 với mọi x;y
Dấu "=" xảy ra <=> x + 3 = 0 và y - 2 = 0
<=> x = -3 và y = 2
Vậy MinC = 0 khi x = -3 và y = 2
\(C=2\left(x^2+6x+9\right)+2\left(y^2-4y+4\right)=2\left(x+3\right)^2+2\left(y-2\right)^2\ge0\)
Vậy MIN C=0 khi và chỉ khi x+3=y-2=0 suy ra x=-3;y=2
1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5
Do (x-2)2>0
=>-(x-2)2<0
=>P(x)=-(x-2)2+5<5
=>Max P=5<=>(x-2)2=0<=>x=2
2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14
=(x-2)2+(y-4)2-14
Do (x-2)2>0
(y-4)2>0
=>(x-2)2+(y-4)2>0
=>A(x)=(x-2)2+(y-4)2-14>-14
=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4
P(x) = 4x - x^2 + 1
= - ( x^2 - 4x + 10)
= -( x^2 - 2.x.2 + 4 + 6)
= -( x- 2 )^2 - 6
Vậy GTLN của p là -6 tại x - 2 = 0 => x = 2
VẬy x = 2 thì ....
B2)
A(x) = x^2 - 4x + y^2 - 8y + 6
= x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14
=( x - 2)^2 + (y - 4)^2 - 14
VẬy GTNN của bt là -14
khi x - 2 = 0 => x = 2
y - 4= 0 => y=4
\(P=\left(x^2+2xy+y^2\right)-4x-4y+4+\left(4y^2-4y+1\right)+2010\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2010\)
\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\) với mọi \(x,y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x+y-2\right)^2=0\) và \(\left(2y-1\right)^2=0\)
\(\Leftrightarrow\) \(x+y-2=0\) và \(2y-1=0\)
\(\Leftrightarrow\) \(x=2-y\) và \(y=\frac{1}{2}\)
\(\Leftrightarrow\) \(x=\frac{3}{2}\) và \(y=\frac{1}{2}\)
Vậy, \(P_{min}=2010\) \(\Leftrightarrow\) \(x=\frac{3}{2};\) và \(y=\frac{1}{2}\)
\(A=4x^2+y^2-12x+8y+28\)
\(=\left(4x^2-12x+9\right)+\left(y^2+8y+16\right)+3\)
\(=\left(2x-3\right)^2+\left(y+4\right)^2+3\ge3\)
Min A = 3 khi: x = 3/2; y = - 4