Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu thứ 2:
Đặt x/12 = y/9 = z/5 =k.
=> x= 12k
y= 9k
z=5k
=> xyz = 12k * 9k * 5k = 20
=> 540 * k^3 = 20
k^3 = 1/27
k= 1/3
=> x= 12k = 12* 1/3 = 4
y= 9k = 9 * 1/3 = 3
z= 5k = 5* 1/3 = 5/3
Vậy x=
y=
z=
ta co : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) va x.y.z=20
Dat : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
x=12k3
y=9k3
z=5k3
x.y.z=540k3
20 = 540k3
k3 =27
k = +-3
Voi : \(k=3\Rightarrow x=36;y=27;z=15\)
Voi :\(k=-3\Rightarrow x=-36;y=-27;z=-15\)
a) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
=>x=12k;y=9k;z=5k
Thay x=12k;y=9k;z=5k vào biểu thức x.y.z=20 ta được
(12k)(9k)(5k)=20
12k.9k.5k=20
540.\(k^3\)=20
k\(^3\)=\(\frac{1}{27}\)
=>k=\(\frac{1}{3}\)
=>\(x=\frac{1}{3}.12=4\)
\(y=\frac{1}{3}.9=3\)
\(z=\frac{1}{3}.5=\frac{5}{3}\)
Vậy x=4;y=3;z=\(\frac{5}{3}\)
b)Ta có:
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{2}z\)=>\(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\)=>\(\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)=>\(\frac{6x}{198}=\frac{9y}{36}=\frac{18z}{90}\)
=>\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=>\(\frac{x}{33}=5\)=>\(x=5.33=165\)
\(\frac{y}{4}=5\)=>\(y=5.4=20\)
\(\frac{z}{5}=5\)=>\(z=5.5=25\)
Vậy x=165;y=20;z=25
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{-x+y+z}{-\frac{11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{-120}{-\frac{4}{3}}=90\)
\(\frac{x}{\frac{11}{6}}=90\Rightarrow x=90\times\frac{11}{6}=165\)
\(\frac{y}{\frac{2}{9}}=90\Rightarrow y=90\times\frac{2}{9}=20\)
\(\frac{z}{\frac{5}{18}}=90\Rightarrow x=90\times\frac{5}{18}=25\)
Giải:
Ta có: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\Rightarrow\frac{-x}{\frac{-11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-x}{\frac{-11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{-x+y+z}{\frac{-11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{-120}{\frac{-4}{3}}=90\)
+) \(\frac{x}{\frac{11}{6}}=90\Rightarrow x=165\)
+) \(\frac{y}{\frac{2}{9}}=90\Rightarrow y=20\)
+) \(\frac{z}{\frac{5}{18}}=20\Rightarrow z=25\)
Vậy bộ số \(\left(x,y,z\right)\) là: \(\left(165,20,25\right)\)
Tự nhiên máy mk bị restart nên mk gửi trả lời hơi chậm nhé!
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất của dãy tủ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\frac{x}{4}=2=>x=8\)
\(\frac{3y}{9}=2=>y=6\)
\(\frac{4z}{36}=2=>z=18\)
Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)
\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)
b) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k,y=9k,z=5k\)
\(xyz=20\)
\(\Rightarrow12k.9k.5k=20\)
\(\Rightarrow540k^3=20\)
\(\Rightarrow k^3=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
Khi \(k=\frac{1}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{1}{3}\Rightarrow x=4\)
\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=3\)
\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=\frac{5}{3}\)
Vậy x = ..... ; y = ............ ; z = .............
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)