Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2=xy+yz+xz\)
\(2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì mũ chẵn luôn lớn hơn hoặc bằng 0
\(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow}}x=y=z\)
\(\Rightarrow x^{2015}+y^{2015}+z^{2015}=x^{2015}+x^{2015}+x^{2015}=3x^{2015}\)
\(\Rightarrow3x^{2015}=3^{2016}\)
\(\Rightarrow x^{2015}=3^{2015}\)
\(\Rightarrow x=3\)
Vậy \(x=y=z=3\)
ta có: \(x^2+y^2\ge2xy\)
áp dụng tương tự cho với y,z và z,x
ta CM được: \(x^2+y^2+z^2\ge xy+yz+zx\)
Dấu = xaye ra <=> x=y=z
Thay vào pt 2 ta được: \(3x^{2009}=3^{2010}\Leftrightarrow x=3\)
vậy x=y=z=3
\(x^2+y^2+z^2=xy+yz+zx\)
\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)
\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)
\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)
Có \(x^{2014}+y^{2014}+z^{2014}=3\)
\(\Rightarrow3.x^{2014}=3\)
\(\Rightarrow x^{2014}=1\)
\(\Rightarrow x=1\)
\(\Rightarrow x=y=z=1\)
Có: \(P=x^{25}+y^4+z^{2015}\)
\(\Rightarrow P=1^{25}+1^4+1^{2015}\)
\(P=1+1+1\)
\(P=3\)
Vậy \(P=3\)
Tham khảo nhé~
Ta có: x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0
<=>(x-y)2+(y-z)2+(z-x)2=0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)
=>x2014=y2014=z2014
Lại có: x2014+y2014+z2014 = 3
=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)
=>\(x=y=z=\pm1\)
Thay x,y,z vào P rồi tính
ta có \(\)X2+Y2+X2=XY+YZ+ZX
2X2+2Y2+2Z2-2XY-2YZ-2ZX=0
(X-Y)2+(Y-Z)2+(Z-X)2=0
SUY RA X=Y=Z
X2009+Y2009+Z2009=3X2009=32010
DỄ DÀNG SUY RA X=Y=Z=3
T ừ x2 + y2 + z2 = xy + yz + zx nhân 2 vế với 2 rồi chuyển vế ta có:
2x2 + 2y2 + 2z2 - 2xy -2 yz -2zx = 0
<=> (X^2 - 2xy + y^2 ) + ( x^ 2 -2zx + z^2) + (y^2 -2 yz+ z^2) =0
<=> ( x -y)^2 + (x - z)^2 + ( y-z)^2= 0
=> x-y=0; x-z=0; y-z= 0
=>. x=y=z thay vào x^2009+ y^2009 +z^2009= 3^2010
ta có 3x^2009 = 3^2010 = 3.3^ 2009 => x=3
Vậy x=y=z =3
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)
\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)
\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)
\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
...
câu hỏi của bạn thiếu dữ liệu phải không?