Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, | 2x - 5 | = 13
\(\Leftrightarrow\orbr{\begin{cases}2x-5=13\\2x-5=-13\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=18\\2x=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=-4\end{cases}}\) ( thỏa mãn x nguyên )
Vậy \(x\in\left\{9;-4\right\}\)
b, |7x + 3| =66
\(\Leftrightarrow\orbr{\begin{cases}7x+3=66\\7x+3=-66\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}7x=63\\7x=-69\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=\frac{-69}{7}\end{cases}}\)
<=> x = 9 ( do x nguyên nên x \(\ne\) \(\frac{-69}{7}\) )
Vậy x = 9
c, |5x - 2| \(\le0\)
Ta có \(\left|5x-2\right|\ge0\forall x\)
Do đó để |5x - 2| \(\le0\)
Thì | 5x - 2 | = 0
<=> 5x - 2 = 0
<=> 5x = 2
<=> \(x=\frac{5}{2}\) ( k thỏa mãn x nguyên )
Vậy \(x\in\varnothing\)
@@ Học tốt
Miraii
a,/2x-5/=13
TH1: 2x-5=13
2x=13+5
2x=18
x=18:2
=>x=9
TH2: 2x-5=-13
2x=-13+5
2x=-8
x=-8:2
=> x=-4
b) /7x+3/=66
TH1: 7x+3=66
7x=66-3
7x=63
x=63:7
=> x=9
TH2: 7x+3=-66
7x=-66-3
7x= -69
x=-69:7
=> x=-63
c) /5x-2/ nhỏ nơn hoặc bằng 0
Bất cứ một số nguyên khi tìm giá trị của nó đều lớn hơn hoặc bằng 0. Trường hợp này thì 5x-2=0. Suy ra 5x=2 không có số nguyên nao thỏa mãn đè bài
Chúc bạn học tốt^^
Có |x| + |y| = 0
\(\Rightarrow\)|x| = 0
|y| =0
\(\Rightarrow\)x = 0; y = 0
Vậy x = 0 ; y = 0
Ta có :
\(\left|x\right|;\left|y\right|\ge0\)
Mà \(\left|x\right|+\left|y\right|=0\)
\(\Rightarrow\left|x\right|=\left|y\right|=0\)
\(\Rightarrow x=y=0\)
Vậy các cặp số nguyên (x, y) thỏa mãn |x| + |y| = 0 là (0, 0)
Bài 1:
<=>7[3(-x)]-12(x-5)=-3(11x-20)
=>-3(11x-20)=5
=>-33x=-55
=>-11.3x=-11.5 (rút gọn -11)
=>3x=5
\(\Rightarrow x=\frac{5}{3}\)
Đã duyệt
bài 1:
<=>7[3(-x)]-12(x-5)=-3(11x-20)
=>-3(11x-20)=5
=>-33x=-55
=>-11.3x=-11.5 (rút gọn -11)
=>3x=5
=>x=\(\frac{5}{3}\)
Do trị tuyệt đối luôn lớn hơn hoặc = 0 nên
\(\left|x+20\right|=0;\left|y-11\right|=0;\left|x+200\right|=0\)
\(\Rightarrow x+20=0;y-11=0;z+200=0\)
\(\Rightarrow x=-20;y=11;z=-200\)
Chúc bn hok giỏi nha
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
Vì tích bằng 0 nên một trong hai thừa số bằng 0
Vậy x = -17 ; 25
Nhớ k nha !
Ta có: \(\left|x+20\right|;\left|y-11\right|;\left|z+2003\right|\ge0\)
\(\Rightarrow\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|\ge0\)
Theo đề: \(\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|\le0\)
\(\Rightarrow\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+20\right|=0\\\left|y-11\right|=0\\\left|z+2003\right|=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-20\\y=11\\z=-2003\end{cases}}\)