Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{2x}{3}=\frac{9y}{11}=\frac{6z}{-5}\)
\(\Rightarrow\frac{2x}{3}.\frac{1}{18}=\frac{9y}{11}.\frac{1}{18}=\frac{6z}{-5}.\frac{1}{18}\)
\(\Rightarrow\frac{x}{27}=\frac{y}{22}=\frac{z}{-15}\)
\(\Rightarrow\frac{-4x}{-108}=\frac{3y}{66}=\frac{7z}{-105}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{-4x}{-108}=\frac{3y}{66}=\frac{7z}{-105}=\frac{-4x+3y-7z}{-108+66+105}=\frac{73}{63}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{73}{63}.27=\frac{219}{7}\\y=\frac{73}{63}.22=\frac{1606}{63}\\z=\frac{73}{63}.\left(-15\right)=\frac{-365}{21}\end{cases}}\)
Vậy ...
\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{z}{15}\)
áp dụng tc của dãy tỉ số = nhau
Đề câu trả lời trên là:
Tìm x, y, z thuộc Z, biết
a) |x| + |-x|= 3-x
b) x6 −1y =12
c) 2x = 3y; 5x = 7z và 3x - 7y +5z = 30
cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại
bạn làm theo cách một chúng ta dc:
\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng đúng v~
Khi 2x+3y-1=0 thì nó thành cách 2 đấy
Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.
v~ thiệt
ta có: \(\frac{4x}{5}=\frac{5y}{6}\Rightarrow24x=25y\Rightarrow\frac{x}{25}=\frac{y}{24}\Rightarrow\frac{x}{50}=\frac{y}{48}\)
\(\frac{3y}{8}=\frac{2z}{7}\Rightarrow21y=16z\Rightarrow\frac{y}{16}=\frac{z}{21}\Rightarrow\frac{y}{48}=\frac{z}{63}\)
\(\Rightarrow\frac{x}{50}=\frac{y}{48}=\frac{z}{63}=\frac{10x}{500}=\frac{4y}{192}=\frac{3z}{189}\)
ADTCDTSBN
có:\(\frac{3z}{189}=\frac{4y}{192}=\frac{10x}{500}=\frac{3z+4y-10x}{189+192-500}=\frac{-238}{-119}=2\)
=> x/50 = 2 => x = 100
y/48 = 2 => y = 96
z/63 = 2 => z = 126
KL:...
Đặt \(\frac{5x}{2}=\frac{7z}{3}=k\Rightarrow x=\frac{2k}{5};z=\frac{3k}{7}\)
Có \(x.z=47250\)
\(\Rightarrow\frac{2k}{5}.\frac{3k}{7}=47250\Rightarrow\frac{6k^2}{35}=47250\Rightarrow k^2=47250.35:6=275625\Rightarrow k=525\)
\(\Rightarrow x=525.2:5=210\)
\(z=525.3:7=225\)
Do \(3x=5y\Rightarrow210.3=5y\Rightarrow630=5y\Rightarrow y=630:5=126\)