Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Ta có : xy.yz.zx=3/5.4/5.3/4
=) x^2.y^2.z^2=9/25
(=) (x.y.z)^2 =9/25
mà (x.y.z)^2 =(3/5)^2
(=) x.y.z =3/5
*Ta có xy=3/5
=) xyz =3/5
=)3/5.z =3/5
=) z =3/5:3/5
(=) z =1
*Ta có: yz=4/5
=) xyz =3/5
=) x.4/5=3/5
=) x =3/5:4/5
=) x = 3/4
*Ta có: zx=3/4
=) xyz =3/5
(=) xzy =3/5
=)3/4.y=3/5
=) y =3/5:3/4
=) y =4/5
Vậy x=3/4, y=4/5, z=1
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{4}=\frac{y-2}{3}=\frac{2x-2+5y-10}{2.4+5.3}=\frac{81-12}{23}=\frac{69}{23}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{4}=2\Rightarrow x=9\\\frac{y-2}{3}=2\Rightarrow y=8\end{cases}}\)
Vậy ...
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
Ta có \(xy=\frac{yz}{2}=\frac{zx}{4}\) => \(\frac{xyz}{z}=\frac{xyz}{2x}=\frac{xyz}{4y}\)mà \(xyz=64 \ne 0\)
=> \(z=2x=4y\)
Đặt \(z=2x=4y=k\)
=> \(z=k , x=\frac{k}{2} , y=\frac{k}{4}\)
Ta lại có : \(xyz=64\)
=> \(\frac{k}{2}.\frac{k}{4}.k=64\)
=> \(k^3.\frac{1}{8}=64\)
=> \(k^3=512=8^3\)
=> \(k=8\)
=> \(\hept{\begin{cases}x=\frac{8}{2}=4\\y=\frac{8}{4}=2\\z=8\end{cases}}\)
Vậy x=4 , y=2 , z=8
Ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) ( Do đó mà \(x;y;z\)cùng dấu )
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{xy}{6}=\frac{yz}{12}=\frac{xz}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{xy}{6}=\frac{yz}{12}=\frac{xz}{8}=\frac{xy+yz+xz}{6+12+8}=\frac{104}{26}=4\)
\(\frac{x^2}{4}=4\Rightarrow x\in\left\{-4;4\right\}\)
\(\frac{y^2}{9}=4\Rightarrow y\in\left\{-6;6\right\}\)
\(\frac{z^2}{16}=4\Rightarrow x\in\left\{-8;8\right\}\)
Mà x ; y ; z cùng dấu nên \(\left(x;y;z\right)\in\left\{\left(-4;-6;-8\right);\left(4;6;8\right)\right\}\)
Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0
Suy ra x;y;z khác 0
Đặt \(2=a;4=b;6=c\) khi đó ta có:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)
Mà \(x;y;z\ne0\) suy ra:
\(ayz+bxz=bxz+xcy=cxy+ayz\)
\(\Rightarrow az=cx;bx=ay\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak;y=bk;z=ck\)
Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{k}{2}=k^2\)
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)
Thay số vào,ta được:
\(x=1;y=2;z=3\)