Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo t/c dãy tỉ số=nhau:
\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{2x^3+2y^3}{12}=\frac{2x^3+2y^3+x^3-2y^3}{12+4}=\frac{3x^3}{16}\) (hơi tắt tí)
và \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{x^3+y^3-\left(x^3-2y^3\right)^{ }}{6-4}=\frac{3y^3}{2}\)
Do đó \(\frac{3x^3}{16}=\frac{3y^3}{4}=>\frac{x^3}{8}=y^3=>\frac{x^6}{64}=y^6\)
\(=>\left(\frac{x^6}{64}\right).y^6=y^6.y^6=>\frac{x^6.y^6}{64}=y^{12}=\frac{64}{64}=1\)
=>y=1 hoặc y=-1
x=2 hoặc x=-2
Vậy....................
bạn ơi cho mik hs tại s ở trên là 3y^3/2 mak s ở dưới là 3x^3/16 = 3y^3/4 ?
\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*
Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Vậy 1 < M < 2 nên M không phải là số tự nhiên/
Chỉ dữ kiện như vậy thì không đủ để tìm x,y , vì có rất nhiều giá trị thỏa mãn.
\(\frac{x-4}{y-3}=\frac{4}{3}\Rightarrow\frac{x-4}{4}=\frac{y-3}{3}\)
Áp dụng TC của DTSBN ta có:
\(\frac{x-4}{4}=\frac{y-3}{3}=\frac{x-4-y+3}{4-3}=\frac{5-1}{1}=4\)
Suy ra: (x-4)/4=4 =>x-4=16=>x=20
(y-3)/3=4=>y-3=12=>x=15
x-4/y-3=4/3
=>3.(x-4)=4.(y-3)
=>3x-12=4y-12
=>3x=4y
Mà x-y=5=>x=y+5
=>3.(y+5)=4y
=>3y+15=4y=>4y-3y=15=>y=15
Khi đó x=15+5=20
Vậy x=20;y=15
a) Theo đề bài, ta có :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)
2y+1 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
2y | 0 | -2 | 2 | -4 | 4 | -6 | 14 | -16 |
y | 0 | -1 | 1 | -2 | 2 | -3 | 7 | -8 |
x | 30 | -30 | 10 | -10 | 6 | -6 | 2 | -2 |
b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)
5x-1 | -1 | 4 | -6 |
5x | 0 | 5 | -5 |
x | 0 | 1 | -1 |
y | -60 | 15 | -10 |
giúp mk đi làm ơn đó huhu
x=28
y=24
gợi ý: ADTCDTSBN