Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)
\(\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Câu thứ 2:
Đặt x/12 = y/9 = z/5 =k.
=> x= 12k
y= 9k
z=5k
=> xyz = 12k * 9k * 5k = 20
=> 540 * k^3 = 20
k^3 = 1/27
k= 1/3
=> x= 12k = 12* 1/3 = 4
y= 9k = 9 * 1/3 = 3
z= 5k = 5* 1/3 = 5/3
Vậy x=
y=
z=
Ta có: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)
\(\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{24}=-5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{33}=-5\\\frac{y}{4}=-5\\\frac{z}{5}=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=-165\\y=-20\\z=-25\end{cases}}\)
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=>x=165,y=20,z=25
C, CHO 7X=3Y VA X -Y =16
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
=> \(\hept{\begin{cases}x=-4.3\\y=-4.7\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}}\)
bạn viết lại đề đi đè gì mà sai hết
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy ...